RELATIONSHIPS and JOINS

Access and SQL Server are Relational Databases, i.e. information is divided into stacks of logically-related data and stored in separate tables between which there are established relationships.

A Relationship is an object in the database. (i.e. It has a name and properties.) It establishes an association or a link between two tables. So it reflects a relationship between two entities.

To create a relationship a field in one table is linked with a field in another table. The fields do not have to have the same name (although they commonly do) but they must have the same data type. In order to relate tables, each must have a primary key.

A Join is an operation you can perform on two or more tables to get another table. The result is called a virtual table, a view or a record set. A Join is not a relationship and it is not an object in the database. The purpose is to extract information from the database that may be in more than one table. The result of a join will have all of the columns of each table in the join. The type of join will determine what the records that get included will look like.

There are three types of RELATIONSHIPS:

1. one-to-many
This is by far the most common type of relationship. It exists between two tables, tblP and tblC, if a record in tblC has only one matching record in tblP, but a record in tblP can have many matching records in tblC.

tblP is called the parent table or primary table and it is the “one” side of the relationship. The linked field in this table must be unique and it is usually the pk.

tblC is called the child table or related table and this table is the “many” side of the relationship. The linked field in the child table is not necessarily unique and is called the foreign key. (“many” actually means “any” number, including 0,1 or 1,034,597)

For example, consider books and publishers. A book can only be related to one publisher; however, a publisher can be related to many books. So a record in the book table can only be related to one record in the publisher table. However, a record in the publisher table can be related to many records in the book table.

2. one-to-one
 Here there are not necessarily any parents or children. A one-to-one relationship exists between two tables, tblX and tblY, if a record in tblX has only one matching record in tblY, and visa versa. Both fields in both tables are unique. (They are not necessarily the pk although usually they are.) One of the tables may be designated as the parent and the other the child.

One example of this type of relationship is called a look-up table. Or you might establish this type of relationship to store additional, seldom accessed information. Or there might be other reasons.

3. many-to-many
A many-to-many relationship exists between two tables, tblX and tblY, if a record in tblX has many matching records in tblY, and a record in tblY has many matching entities in tblX.

This is not permitted directly in Access or many DBMS. To implement this, a third table, called a junction table or a bridge table, must be created. This junction table will have two fields as its pk: the pk fields in the two tables being related in the many-to-many relationship. Hence two one-to-many relationships are needed to implement a many-to-many relationship. (Access calls a many-to-many relationship indeterminate.)

An example of a many-to-many relationship is the relationship between books and authors. A book can have more than one author and an author can write more than one book.

There are many types of JOINS

1. CROSS JOIN (also called a Cartesian Product) – a table that results when each record in one table is matched with every record in a second table. If the first table has n records and a columns and the second table has m records and b columns the resulting table will have a+b columns and nxm records.

2. INNER JOIN – includes only the records in the Cartesian Product that have a match in the specified columns from each table that the join is based on. (Usually these are the same columns that establish the relationship between the two tables – hence the confusion between joins and relationships.)

3. LEFT JOIN (A type of Outer Join) – includes the same records as those in an INNER JOIN (i.e. the records that have a match in the join columns) and additionally any records in the left table that have no matching records in the other table. The left table is merely the table on the left side of the words LEFT JOIN in the syntax.

4. RIGHT JOIN (A type of Outer Join) – includes the same records as those in an INNER JOIN (i.e. the records that have a match in the join columns) and additionally any records in the right table that have no matching records in the other table. The right table is merely the table on the right side of the words RIGHT JOIN in the syntax. (If the right table is a child table, there will be no extra records if referential integrity is enforced.)

5. Self Join – later

6. Theta Join - later

SQL Syntax for Joins:

…FROM tblA INNER JOIN tblB ON tblA.matchingColumn = tblB.matchingColumn

Alternate syntax:
…FROM tblA, tblB

WHERE tblA.matchingColumn = tblB.matchingColumn
If this is used:

… FROM tblA, tblB (with no criteria given for matching values in specified columns in each table)

then the result is a Cartesian Product. This is sometimes considered to be two tables with “no join”.

