Homeostasis and Hormones

Bio 11
homeostasis

- A steady state of body functioning - i.e. the body keeps a constant environment no matter what is happening in the external environment.
- Example is temperature
Homeostasis

- Dynamic equilibrium
- Feedback systems
- Negative feedback seen in shivering when the body reaches temp - stop shivering
- Positive feedback seen in labor
Hormones

- Chemical signals that is carried by the circulatory system.
- Secreted by endocrine glands which make up the endocrine system.
- Target cells
Hormones to target cell - target cell can be anywhere in body

Diagram showing:
- Secretory vesicles
- Blood vessel
- Target cell
- Hormone molecules
Neurosecretory cells - both nerve impulses and hormone release.
Hormones

- Protein and peptides - 3 to 30 amino acids
- Amines - derived from amino acids
- Steroids
Water soluble hormones and their receptors
Steriod hormones and their receptors

Lipid-soluble hormone (testosterone)
Target cell
Receptor protein
Hormone receptor complex
DNA
Transcription
mRNA
New protein

Cellular response: activation of a gene and synthesis of new protein
Hormones

- Different target cells may have different responses
- Example epinephrine effects on cardiac and liver tissue
Some of the hormone secreting glands

- Hypothalamus
- Pineal gland
- Pituitary gland
- Thyroid gland
- Parathyroid glands
- Thymus
- Adrenal glands (atop kidneys)
- Pancreas
- Ovary (female)
- Testes (male)
<table>
<thead>
<tr>
<th>Gland</th>
<th>Hormone</th>
<th>Chemical Class</th>
<th>Representative Actions</th>
<th>Regulated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothalamus</td>
<td>Hormones released by the posterior pituitary and hormones that regulate the anterior pituitary (see below)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>Prolactin (released by the posterior pituitary)</td>
<td>Peptide</td>
<td>Stimulation of growth of mammary glands</td>
<td>Nervous system</td>
</tr>
<tr>
<td>Anterior pituitary gland</td>
<td>Growth hormone (GH)</td>
<td>Protein</td>
<td>Stimulates growth (especially bones) and metabolic functions</td>
<td>Hypothalamic hormones</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>Antidiuretic hormone (ADH)</td>
<td>Peptide</td>
<td>Promotes retention of water by kidneys</td>
<td>Water balance</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>Melanocyte stimulating hormone (MSH)</td>
<td>Protein</td>
<td>Stimulates production of ova and spermar</td>
<td>Hypothalamic hormones</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>Ursin hormone (UH)</td>
<td>Protein</td>
<td>Stimulates growth and destruction of testes</td>
<td>Hypothalamic hormones</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>Thyroid-stimulating hormone (TSH)</td>
<td>Protein</td>
<td>Stimulates thyroid gland</td>
<td>Thyroid in blood, hypothalamic hormones</td>
</tr>
<tr>
<td>Pineal gland</td>
<td>Melatonin</td>
<td>Aamine</td>
<td>Involved in rhythmic activities (daily and seasonal)</td>
<td>Light/dark cycles</td>
</tr>
<tr>
<td>Thyroid gland</td>
<td>Thyroxine (T₄) and triiodothyronine (T₃)</td>
<td>Aamine</td>
<td>Stimulates and maintains metabolic processes</td>
<td>TSH</td>
</tr>
<tr>
<td>Parathyroid glands</td>
<td>Parathyroid hormone</td>
<td>Peptide</td>
<td>Lowers blood calcium level</td>
<td>Calcium in blood</td>
</tr>
<tr>
<td>Thymus</td>
<td>Thymosin</td>
<td>Peptide</td>
<td>Stimulates T cell development</td>
<td>Not known</td>
</tr>
<tr>
<td>Adrenal glands</td>
<td>Adrenal medulla</td>
<td>Epinephrine and norepinephrine</td>
<td>Increases blood glucose; increases blood pressure; constricts certain blood vessels</td>
<td>Nervous system</td>
</tr>
<tr>
<td>Adrenal cortex</td>
<td>Glucocorticoids</td>
<td>Steroid</td>
<td>Increases blood glucose</td>
<td>ACTH/K⁺ in blood</td>
</tr>
<tr>
<td>ADH</td>
<td>Insulin</td>
<td>Protein</td>
<td>Lowers blood glucose</td>
<td>Glucose in blood</td>
</tr>
<tr>
<td>Glands</td>
<td>Glucagon</td>
<td>Protein</td>
<td>Maintains blood sugar level</td>
<td>Glucose in blood</td>
</tr>
<tr>
<td>Islets</td>
<td>Androgens</td>
<td>Steroid</td>
<td>Support sperm formation; protects development and maintenance of male secondary sex characteristics</td>
<td>FSH and LH</td>
</tr>
<tr>
<td>Ovaries</td>
<td>Estrogens</td>
<td>Steroid</td>
<td>Stimulates uterine lining growth; promotes development and maintenance of female secondary sex characteristics</td>
<td>FSH and LH</td>
</tr>
<tr>
<td>Prostate</td>
<td>Progesterone</td>
<td>Steroid</td>
<td>Promotes uterine lining growth</td>
<td>FSH and LH</td>
</tr>
</tbody>
</table>

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.
Two hormones made by hypothalamus and secreted by pituitary
Anterior pituitary—regulated by hypothalmas—produces releasing and inhibiting hormones
Negative feedback of thyroxine

- Hypothalamus
 - TRH
 - Anterior pituitary
 - TSH
 - Thyroid
 - Thyroxine

Inhibition
Thyroid

- Thyroxine - T4 (4 iodines)
- Triiodothyronine - T3 (3 iodines)
Calcium regulation

- Parathyroid glands (4)
- Parathyroid hormone (PTH)
- Calcitonin (thyroid)
- Antagonistic hormones
Calcium regulation

- Stimulus: Rising blood Ca²⁺ level (imbalance)
- Blood Ca²⁺ rise
 - Active vitamin D
 - Parathyroid glands release parathyroid hormone (PTH)
 - Parathyroid gland

- Stimulus: Falling blood Ca²⁺ level (imbalance)
- Parathyroid glands release parathyroid hormone (PTH)

- Homeostasis: Normal blood calcium level (about 10 mg/100 mL)
- Calcium regulation diagram
- Thyroid gland releases calcitonin
- Stimulates Ca²⁺ deposition in bones
- Reduces Ca²⁺ uptake in kidneys

- Stimulates Ca²⁺ release from bones
- Increases Ca²⁺ uptake in kidneys
- Increases Ca²⁺ uptake in intestines

- PTH
Blood glucose levels

- Insulin
 - Stimulator: Rising blood glucose level (e.g., after eating a carbohydrate-rich meal)
 - Effect: Body cells take up more glucose
 - Stimulus: Declining blood glucose level (e.g., after skipping a meal)
 - Effect: Liver breaks down glycogen and releases glucose to the blood
 - Alpha cells of pancreas stimulated to release glucagon into the blood
 - Glucagon
 - Stimulus: Declining blood glucose level (e.g., after skipping a meal)
 - Effect: Liver takes up glucose and stores it as glycogen

Homoeostasis: Normal blood glucose level (about 90 mg/100 mL)

- Blood glucose level declines to a set point; stimulus for insulin release diminishes
Sugar uptake

- **Diabetic**
- **Normal**

Axes:
- **Y-axis:** Blood glucose (mg/100mL)
- **X-axis:** Hours after glucose ingestion

Graphs:
- Red line: Diabetic
- Blue line: Normal
Adrenal glands

Short-term stress response:
1. Glycogen broken down to glucose: increased blood glucose
2. Increased blood pressure
3. Increased breathing rate
4. Increased metabolic rate
5. Change in blood-flow patterns, leading to increased alertness and decreased digestive and kidney activity

Long-term stress response:

- Mineralocorticoids
 1. Retention of sodium ions and water by kidneys
 2. Increased blood volume and blood pressure

- Glucocorticoids
 1. Proteins and fats broken down and converted to glucose, leading to increased blood glucose
 2. Immune system may be suppressed