Bio 11

Chemistry

- The atom is the basic component of a molecule.
- It is composed of a nucleus which has positively charged protons and neutral neutrons.
- Orbiting around the nucleus are the electrons

Definitions

- Atomic number -- number of protons
- Mass number--number of protons and neutrons
- Atomic mass -- approximately equal to the number of protons and neutrons
- Isotopes -- same number of protons different number of neutrons.

Hydrogen and some of its isotopes

Table 2.1	Isotopes of Carbon					
	Carbon-12	Carbon-13	Carbon-14			
Protons	6 – mass – number	6 – mass – number	6 – mass – number			
Neutrons	6 12	7 📙 13	8 14			
Electrons	6	6	6			

- Atoms are arranged on the periodic table by rows and columns.
- Where an atom is on a periodic table will tell you about how it will react chemically.

The six elements highlighted in yellow make up 98% of the mass of any living organism.										2 He 4.003							
3 4 Chemical symbol Li Be Atomic number 6.941 9.012 Atomic number									9 F 18.998	10 Ne 20.179							
11 12 Atomic weight present in tiny amounts in many organisms.						iny	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.06	17 Cl 35,453	18 Ar 39.948					
19 K 39.09	20 Ca 40.08	21 Sc 44.956	22 Ti 47.88	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.922	34 Se 78.96	35 Br 79.909	36 Kr 83.80
37 Rb 85.47	38 Sr 78 87,62	39 Y 88.906	40 Zr 91.22	41 Nb 92,906	42 Mo 95,94	43 Tc (99)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.4	47 Ag 107.870	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 1 126.904	54 Xe 131.30
55 Cs 132.9	05 56 Ba 137.34	57-71 La-Lu	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.2	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.950	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223	87 88 89–103 104 105 106 107 108 109 Fr Ra Ac-Lr 226.025 Ac-Lr Vertical columns have elements with similar properties.								with								
Lant	hanide	series	57 La 138.906	58 Ce 140.12	59 Pr 140.9077	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Cd 157.25	65 Tb 158.924	66 Dy 162.50	67 Ho 164.930	68 Er 167.25	69 Tm 168.934	70 Yb 173.04	71 Lu 174.97
S9 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide series Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 227.028 232.038 231.0359 238.02 237.0482 (244) (243) (247) (247) (251) (252) (257) (258) (259) (259) (250) (250) (251)<						103 Lr (260)											

- The electrons in an atom are distributed into shells.
- The first shell or orbital can only hold two electron.
- The second shell or orbital can hold eight electrons.
- The third shell or orbital can hold eight electrons.

The Periodic Table

- The number of electrons in the outer shell determines how the atom will behave chemically.
- Also the number of electrons in the outer shell will determine which column the atom is in.
- The number of shells an electron has determines the row the atom is in.

Unstable, very reactive atoms Stable, unreactive atoms

Polar vs. non-polar covalent bonds

- In covalent bonds electrons are evenly shared between the two nuclei.
- In a polar covalent bond the electrons are shared unevenly. The atom with more electrons in its outer shell will "hog" the shared electrons while the one with fewer electrons in its outer shell will have less of the shared electrons time.

(a) Hydrogen molecule

Covalent bonds

 The number of bonds the atom can form is dictated by the number of valence (outer) electrons it needs to fill its outer orbital.

(b) Water molecule

Hydrogen bonds

- When a partially positive hydrogen is attracted to a negatively charged oxygen or nitrogen.
- Water is a good example of hydrogen bonding.

In ice, the maximum number of hydrogen bonds form, causing the molecules to be spread far apart.

liquid water

In liquid water, hydrogen bonds constantly break and reform, enabling a more dense spacing than in ice.

Copyright © 2005 Pearson Prentice Hall, Inc.

ice

- This leaves one atom positively charged and another atom negatively charged. Therefore they are attracted to each other.
- Solutions with ions (charged ions) can conduct electricity.

Chloride ion in solution

Basic solution

Neutral solution

unpaired electron + :0:----• N : · N::O: nitric nitrogen oxygen oxide

free radical

Important Biological Molecules

Vocabulary

- Hydrocarbons (chains of C)
- Isomers (same molecular formula different shape)
- Functional groups
- Hydrophilic
- Hydrophobic

Different versions of the energy molecule Glucose (a carbohydrate)

ball-and-stick model of glucose

space-filling model of glucose

More vocabulary

- Macromolecules
- Polymers
- Monomers
- Dehydration reaction
- Hydrolysis

Dehydration reaction

(b) Breaking a polymer chain

Additions of Functional Groups

Table 3.1 Functional groups							
Group:	Structural formula:	Found in:					
Carboxyl (—COOH)	-c ^{//O} OH	fatty acids, amino acids					
Hydroxyl (— OH)	— OH	alcohols, carbohydrates					
Amino (— NH ₂)	-N_H	amino acids					
Phosphate (—PO ₄)	0 -0-P-0- 0-	DNA, ATP					

The makings of a Fatty Acid

(a) A dehydration reaction linking a fatty acid to glycerol

(b) A fat molecule with a glycerol "head" and three energy-rich hydrocarbon fatty acid "tails"

Food source	(a) Carbohydrates	(b) Fats				
Energy stored	The starch in carrots stores energy.	The fat in cows stores energy.				
Energy made available	When we eat carrots, the starch is broken down into glucose.	When we eat meat, the fat is broken down into glycerol and fatty acids.				
	• • • •					
Energy used	Glucose can start serving as an energy source.	Glycerol and fatty acids can start serving as an energy source.				
Energy stored	If the body doesn't need energy immediately, glucose will be converted into glycogen, which is stored in the liver for later use.	If the body doesn't need energy immediately, glycerol and fatty acids will be converted into triglycerides , which are stored in fat cells for later use.				
	••••					

Basic structure for many hormones

(a) Four-ring steroid structure

(a) The general structure of an amino acid

(b) Examples of amino acids with hydrophobic and hydrophilic side groups

Normal red blood cell

(a) Normal hemoglobin

Normal hemoglobin

Sickle-cell hemoglobin

Sickled red blood cell

(b) Sickle-cell hemoglobin

MAJOR TYPES OF PROTEINS							
Structural Proteins	Storage Proteins	Contractile Proteins	Transport Proteins	Enzymes			
				Andrew Brander			

Table 3.2 Monomers, Polymers

Large biological molecules	Functions	Components	Examples
Carbohydrates	Dietary energy; storage; plant structure	H C OH OH H C OH H C OH H OH H OH H OH	Monosaccharides: glucose, fructose Disaccharides: lactose, sucrose Polysaccharides: starch, cellulose
Lipids	Long-term energy storage (fats); hormones (steroids)	H-C-OH H-C-OH H-C-OH H-C-OH H-C-OH H Glycerol Components of a triglyceride	Fats (triglycerides); Steroids (testosterone, estrogen)
Proteins	Enzymes, structure, storage, contraction, transport, and others	Amino group H H H C Carboxyl group H C OH Side group Amino acid	Lactase (an enzyme), hemoglobin (a transport protein)
Nucleic acids	Information storage	Phosphate Base Sugar Nucleotide	DNA, RNA