
CS131B Instructor’s notes 2025

1 Background

Key terms: grammar comment
Exercise: Introduce yourself to your peers in the course forum.
Reading: Course policies1

Reading: Course philosophy2

CS131B is an introduction to the famous Python language, which was developed starting in
1989 by the Dutch mathematician and computer scientist Guido van Rossum. The advisory
for this course is CS110A, which is a more basic introduction to programming. CS131B has no
enforced prerequisites, but you will need some basic skills and resources: a conversational level
of English; the ability to use the web LMS and to log into the UNIX server; and the willingness
to read carefully.
Programs exist to compute at greater scale than is otherwise possible. They are used in nearly
every field of endeavor. Your goal is to develop fluency in Python and notice related computer
science topics. A dedicated novice completing this course is fluent enough to reach the major
milestone of writing a useful program.
A Python program is composed of “plain” text. Some of the characters used are at hand
on full-size computer keyboards, but harder to call up using tiny or on-screen input devices.
The characters consist of vaguely English-language names written in all lowercase letters, the
familiar arithmetic symbols of a calculator, matched pairs of several types of enclosures, and a
few other elements we won’t address here. A suggested style is formally guided by a document
called PEP-008.3

All languages use grammar to encode semantic meaning. This means any messages not con-
forming to that grammar, whose meaning is inherently unclear, must be rejected. In natural
language, we call these unintelligible constructs “gibberish” or “word salad”, but we cannot al-
ways reject them out of hand. By tightly constraining program validity, computers can reliably
do very complex operations which would be impractical to describe in natural language. In
practice this means that many texts which are draft versions of Python programs do absolutely
nothing, because they are not grammatically valid. They produce syntax errors, and when that
happens, the programmer’s first order of business is making the program valid again so that
work can proceed on its logic.
Interleaved with rigid programmatic statements are sections of prose called “comments,” which
allow more flexible expression, because they are not subject to any grammar at all. Their main
use is for you to store notes for yourself; you’d be surprised how confusing the source code
you wrote last year can be. A description of a program’s operation in comments is a kind of
functional specification, which can be used to assess the program’s correctness in testing. Noone
regrets writing too many comments. They can also seal off problematic code and disable it on
a temporary basis. A hash, #, makes anything between it and the next newline a comment. A
matched pair of triple quotes, ''' or """, though not formally a comment, similarly disables
any statements between them.

Anything after the hash mark is a free text comment.
''' Strings can also be used as comments, in cases
where the content must span multiple lines.'''

Next, we will address the environment in which your programs will run.
1https://fog.ccsf.edu/~abrick/policies.html
2https://fog.ccsf.edu/~abrick/pedagogy.html
3https://peps.python.org/pep-0008/

https://fog.ccsf.edu/~abrick/policies.html
https://fog.ccsf.edu/~abrick/pedagogy.html
https://peps.python.org/pep-0008/

