
CS131B Instructor’s notes 2024

11 Files

Key terms: with open read write close bytes

Reading: Severance 7

Exercise: Write a program that creates a file with a randomly
chosen filename.

Operating systems store files in file systems using addresses called path-
names, or paths. Absolute pathnames begin at the filesystem root, so in
UNIX, they start with a slash: /proc/version. Relative pathnames begin at
some arbitrary place in the hierarchy, making them inherently ambiguous:
letter.txt.

Files are inherently sequential storage, which matches Python’s model of
iterables. An open file is represented by a “wrapper” object, through which
line-oriented files can be handled directly: the wrapper is an iterable object,
returning one line at a time. Rarely is it wise to read a file more than once;
in the event we want continual access, we might prefer to keep parts of it
in memory.

A call to open() yields a wrapper object for dealing with the contents of a file
on disk. It is convenient to use the with keyword for a “context manager”
that closes the file for us. The wrapper object has read(), write(), and
seek(), methods. Permissions rules administered by the operating system
control access to files; the methods for reading and writing permissions
modes are in the os module. File accesses is for reading only by default, or
else writing, appending, and so on based on a mode parameter.

Store the contents of a file as a single string:
text = open("/proc/version").read()
Store the contents of a file in a list of strings:
lines = open("/etc/passwd").readlines()

Since several sorts of things can go wrong with file access, it is wise to run
robust exception tests to check for various errors:

Try to open the file specified:
import sys
try:
file = open(sys.argv[1])
except IndexError:
print ('No filename passed.')
except FileNotFoundError:
print ('File not found.')
except PermissionError:
print ('File not readable.')

Python’s default encoding is UTF-8: strings are stored with Unicode code-
points, represented in output using the UTF-8 scheme. Python 3 is righ-
teously strict about encodings, which prevents confusion between strings
and encoded streams (bytes). This change enables Python code to handle
all scripts with no fuss. The above examples will raise a UnicodeDecodeError
if the input file is not valid UTF-8. This behavior is the alternative to the
ostrich-style decoding you may have seen in web pages and emails seemingly
containing gibberish.

Try to read UTF-8 text from an open file:
try:
text = file.read()
except UnicodeDecodeError:
print ('File is not in UTF-8.')

Next, we will address functions.

