
CS131B Instructor’s notes 2024

12 Functions

Key terms: def return lambda

Reading: Severance 4

Exercise: Write a program that dies with a RecursionError.

Compartmentalizing procedures with defined interfaces is nearly as old as
programming itself; it was proposed by Grace Murray Hopper in 1952.
Functions, or methods, are in Python declared using the keyword def and
a collection of arguments. All calls are by reference and these arguments
are normally untyped. Functions have their own scope, so names defined
there do not exist elsewhere. They can return None or any other object,
including collections.

Defining a temperature conversion function:
def c2f(c):
return 32+9*c/5
Defining its inverse as an inline lambda function:
f2c = lambda f: 5*(f-32)/9

It’s important to verify that functions operate properly; that for a given
input, they produce the expected output. Usually, we would want to test
many cases, and have them all be correct; this is called unit testing. In the
absence of a formal testing framework the programmer might still want to
make some checks:

Verify that f2c and c2f agree about certain temperatures:
print(f2c(32)==0)
print(c2f(100)==212)
print(f2c(-40)==c2f(-40))

The two sorts of arguments of a functional call are positional and named.
Positional ones occur in order, resembling a tuple; named arguments are
more like a dict. In either case, default values (with =) makes it more
possible for a function to serve both basic and advanced uses.

Define and employ a helper function for annotating log entries.
Note the combined positional and named arguments.
def annotate (message, subsystem='unspecified'):
return '{}: {}.'.format(subsystem,message)
print (annotate (message="It is midnight"))
print (annotate (message='Irrigation commences',
subsystem='garden'))

It bears mentioning that Python supports statically typed function defini-
tions since version 3.5.15 As an example, we can guarantee that a conversion
function receive only numbers:

A conversion that rejects nonnumeric arguments:
def c2f(c:float):
return 32+9*c/5

Advanced function techniques like generators, decorators, and execution
pools are covered in CS231, Advanced Python Programming.

Next, we will address regular expressions.

15https://docs.python.org/3/library/typing.html

https://docs.python.org/3/library/typing.html

