
CS131B Instructor’s notes 2025

9 Iteration

Key terms: for while

Reading: Daw-Ran Liou’s “You (Probably) Don’t Need For-Loops”13

Exercise: Solve Gauss’s problem: find the sum of the integers from 1 to 100.
As in other procedural languages, explicit loops are offered here in two styles. while is the same
as in other languages: it continues until a condition becomes False. for touches on each object
in an iterable collections and for that reason is inherently safer than while: it prevents infinite
loops and off-by-one errors, as well as freeing the programmer from counting the elements in a
collection.
Nonetheless, explicit loops are not often needed, and avoiding them saves code and the risk of
bugs. The functional model of programming uses implicit loops and more nested expressions
to make execution flow more implicit, and relieve the programmer of having to remember as
much. Consider the task of combining the command line arguments around copies of the word
“and”: ' and '.join(sys.argv) is more robust and succinct than a loop that assembles the
string. We can rely on certain built-in features that do iteration implicitly, including functions
like range(), max(), any(), sum(), and the slice notation ([::]).
Let’s review several ways to solve a simple iterative problem, counting to 100. First comes a
painful C-style example, which counts and increments as long as i < 100. Because the code is
stateful, unexpected states could occur and create bugs. Since Python lists are iterable, the
work maintaining and checking the index adds nothing.

Counting iteration (don’t do this):
i = 0
while i < 100:
print (i)
i += 1

Second is iteration over the members of a collection. This one is not so bad. The code is shorter
and more robust because it does leaves out the fiddliest bits. It does still have a stateful loop
where surprises could occur.

For-each iteration (use sparingly): for i in range(100):
print(i)

The most robust programs are those where the least can go wrong. These two implicit iteration
styles rely on the built-in function range() to create a sequence of numbers. It may take you
some concentration to understand these styles of programming, because they are not imperative,
like most languages, but functional. Their elegance is in the fact that there is no loop at all.
Expect to see Pythonic code that uses this style, because it tends to produce shorter code that
is more resistant to bugs.
The first uses the “splat”, lstinline|*|, to explode a collection into its member elements; print()
receives 100 arguments to print, plus one named argument asking it to separate those elements
with newlines. The second maps the numbers into strings, then joining them with newlines in
between to create one long string.

Implicit iteration (prefer this):
print(*range(100),sep='\n')
print('\n'.join(map(str,range(100))))

Next, we will address exception handling.
13https://medium.com/python-pandemonium/never-write-for-loops-again-91a5a4c84baf

https://medium.com/python-pandemonium/never-write-for-loops-again-91a5a4c84baf

