
CS231 Instructor’s notes 2025

1 Server

Key terms: hills ssh $

Reading: Course policies1

Reading: Course philosophy2

You may use any kind of computer for this course; a keyboard is highly recommended. Building
your programs on the student Linux server hills is the established standard, faster to start
with, and very powerful, but relatively spartan and arcane. On your own device, you can use
newer or fancier development tools but have to set up a way to transfer programs to and from
the server. There is no right answer to this question — do what works for you.

Tips for developing on hills:
1. Use one of the editors nano (easy),
emacs or vim (both are cults3). 2. Open
two SSH sessions so that you can run
commands in one while the editor pro-
gram stays open in the other.

Tips for developing elsewhere:
1. Use your editor’s “save to server” feature to save a
lot of steps moving files by hand. 2. Install a trusted
SSH key on the server to avoid typing your password
many times. 3. Avoid targeting too new a version
of Python by checking which version is currently in-
stalled on hills.

Either way, you need to use hills every week to test and send in a program and to peer review
others’ programs. Log in by making an SSH connection to hills.ccsf.edu; your device is likely
to already have the SSH client software. Your password will be masked or suppressed as you are
typing it, so don’t think that your keyboard has stopped working or the connection has dropped.
Upon login, you’re running an interactive shell called bash, whose command prompt usually
ends in $. To run other programs you can type their names here. When your program, whose
name ends in the extension .py, implements the problem stated in the assignment prompt, use
~abrick/send to turn it in:

[yourname@hills ~]$ ~abrick/send
Pass the filename of the file you want to send.
[yourname@hills ~]$ ~abrick/send myhomework.py
Success. Thank you for submitting your homework for 231.

The week after a program is due, use ~abrick/tally to access your peer review materials. Its
output indicates which peer work you should review next, the comments your work has received,
the top submissions each week, and your current grade. Read (nano, cat) and run (python3)
the peer programs listed. Write a review for each; they should be specific, constructive, in
complete sentences, and both supportive and critical. Precede each review with the code of the
file described. An example PR file is linked from the course policies.4

The peer review deliverable is a file with extension .pr that contains your reviews, ranked in
order from best to worst. These lines contain linebreaks or be wrapped; they should be long
lines. You may have to remove newlines added automatically by your editor (e.g., nano -w turns
off this behavior). If you describe an error, make sure you include the input that triggered it.
If you encounter an irredeemably dishonest or irrelevant submission, to write an explanatory
comment that begins with the special marker “N/A”.

First, we’ll see which styles of iteration are more or less robust.
1https://fog.ccsf.edu/~abrick/policies.html
2https://fog.ccsf.edu/~abrick/pedagogy.html
4https://fog.ccsf.edu/~abrick/policies.html

https://fog.ccsf.edu/~abrick/policies.html
https://fog.ccsf.edu/~abrick/pedagogy.html
https://fog.ccsf.edu/~abrick/policies.html

