
CS231 Instructor’s notes 2024

11 Decorators

Key terms: @ args kwargs inner()

Reading: Real Python’s Primer on Python Decorators26

Reading: Akshar’s Understanding ‘*’, ‘*args’, ‘**’ and ‘**kwargs’27

Exercise: Write a decorator that produces degree-based versions
of the radian-based trigonometic functions (math.sin, etc.).

Wrapper functions, e.g., wrapper(original()), accommodate additional,
optional functionality, and functions can have different wrappers for dif-
ferent purposes. Decorators28 provide an abstracted and reusable kind of
wrapping. Their rationale is that various functions can benefit from the
same decoration behavior. If we only wanted that functionality in a single
method, it would just be built there, but if it’s useful more generally, the
same decorator can apply.

A decorator is a function which returns a “decorated” version of some other
function. In more formal terms, decoration is a persistent functional closure
— a context in which functions are decorated with some useful behavior. Of
course, behavior can be controlled by parameters passed to the decorating
function. This is a way to systematize object-oriented method overriding.
Decorators can also be autogenerated for different uses.

A decorator returns a reference to a new inline function which calls the
function being decorated. In this way decorators allow us to change the
form of data returned by a method, or do additional setup and breakdown
work around it.

Decorator that adds logging:
def add_logging(action):
def inner(base):
print (action, base, end='')
return action(base)
return inner

The same decorator may be useful to log, validate, budget, monitor, or pro-
file any number of functions, which may themselves be variously decorated.
We decorate a function either with the @ “pie” sign or by reassigning its
name. Both approaches have the same effect.

Decorate cube() by enabling either of the ## commented lines:
##@add_logging
def cube(base):
print(base**3)
##cube=add_logging(cube)
Demonstrate the decorated function:
cube(11)

Since decorators need to pass on arguments meant for a decorated and
wrapped function, they are defined using generalities. A tuple, args, and a
dict, kwargs, contain all the positional and named parameters for a function
call. The “splat” operators again expand iterables in place: f(*args,**kwargs)
— some positional arguments and some keyword arguments — is the most
general form of an arbittrary function call.

Like a generator, if a decorator is stateful, nonlocal is needed to access a
persistent value in the outer scope.

26https://realpython.com/blog/python/primer-on-python-decorators/
27https://www.agiliq.com/blog/2012/06/understanding-args-and-kwargs/
28https://www.python.org/dev/peps/pep-0318/

https://realpython.com/blog/python/primer-on-python-decorators/
https://www.agiliq.com/blog/2012/06/understanding-args-and-kwargs/
https://www.python.org/dev/peps/pep-0318/

