
CS231 Instructor’s notes 2024

12 Character encodings

Key terms: bytes raw UTF-8 Unicode

Reading: World Wide Web Consortium’s “Character encodings:
Essential concepts”29

Reading: Python Unicode HOWTO30

Exercise: Write a program that accurately guesses whether a
specified UTF-8 text file is written in Italian or Japanese.

It may seem obvious that an ‘L’ is only and exactly an ‘L’, but at a low level
we rely on rules for describing and recognizing it. Visually we expect it to
resemble the hands of an analog clock showing 3:00, but on disk it is com-
posed of a sequence of binary digits (bits), often exactly eight of them, or
one byte. Many binary character encodings are available, of fixed or variable
width, all of which are designed to serve certain written languages. Histori-
cal examples which include Morse Code (variable width and English-based),
ASCII (fixed width and English-based), and ISO-8859-1 (fixed width and
Western European-based). The modern standard is UTF-8, which is vari-
able width and interlingual, encoding the Unicode Consortium’s character
database. Happily, we can now mix as many languages as we want — as
long as we have terminals and fonts that support them. There are a few
transliteration tools out there, but the best one, International Components
for Unicode, is not written in Python and so it has to be run externally.

Python version 3 strings contain Unicode codepoints, which are stored in-
ternally in a custom way for optimization, but expressed and loaded by
default as UTF-8. To describe the information that travels over a network
or to and from a file more closely we have bytes objects, a rawer form of
data that does not necessarily represent characters. Content is decoded
according to the mode with which a file is opened, which can be given
in the encoding= argument to open(); binary mode, mode='rb', acquires a
bytes object rather than a decoded string; this is needed for working with
non-character-based “binary” files.

Check whether a file is encoded as UTF-8:
import sys
def check(file):
try:
open(file).read()
return True
except UnicodeDecodeError:
return False

print(check(sys.argv[1]))

str.encode() makes bytes from a string while bytes.decode() does the op-
posite. Therefore, for a string s, s == s.encode().decode(). Is the inverse
true? Not necessarily, because UTF-8 is a variable width encoding, so some
series of bytes are not valid. Both these methods will take an errors= ar-
gument where the policy for encoding and decoding errors can be ignore
or replace.

The strings ‘a’ and ‘á’ both contain one codepoint, but UTF-8 requires two
bytes to encode the latter: len('á'.encode('utf8'))> len('a'.encode('utf8')).
Similarly, “raw” strings without the default backslash interpretation are
written r'hello'; note that len(r'\n')> len('\n').

Next week, we will address the matter of general data encodings.
29https://www.w3.org/International/articles/definitions-characters/
30https://docs.python.org/3/howto/unicode.html

https://www.w3.org/International/articles/definitions-characters/
https://docs.python.org/3/howto/unicode.html

