CS231 Instructor’s notes 2025

5 Logs & Time

Key terms: date timedelta datetimeEa dateutil calendar
Reading: Basic date and time typesg

Exercise: Write a program that demonstrates a generator yielding the number of
seconds after midnight when each access occurred, from the beginning of /etc/httpd/logs/access_log.

The Gregorian calendar is complicated. The solar year isn’t an integer multiple of solar days
(it’s about 365.24) nor lunar cycles (about 12.39). Months have 28 to 31 days; under Daylight
Savings schemes, days have 23 to 25 hours; and leap seconds make some minutes last 61 seconds.
Then there are time zones, whose borders aren’t straight lines. All these elements complicate
timing, so thankfully Python includes infrastructure to handle the complexity.

Working with timestamps can be tricky if you run into other ancient traditions of timestamping
such as the epoch timestamp or the time.struct_time model. Python can work with these, but
you’ll hope not to, because they present complications compared to the native types, such as
requiring conversion.

There are various different string representations of the same date, such as the POSIX style
offered by datetime.timestamp() and the various locale variations expected around the world.
When time zone information is present, a timestamp is “aware”, as opposed to “naive”. Any kind

of string representations of dates can be loaded once the format is specified using datetime.strptime().
The most common zone to use other than the local one is, of course, Coordinated Universal
Time, UTC.

In the datetime package, date and time objects are just as they sound: idealized measures
devoid of geography and politics. A datetime combines them into a single point in time —
subject to assumptions about all those complex details. Time types are immutable. Make
new times as needed by adding or subtracting a timedelta; these can be defined directly
(datetime.timedelta(days=1)) or made from the differences between two datetimes.

lifetime = date(1852,11,27) - date(1815,12,10)
print ("The Countess of Lovelace lived {} days.".format(lifetime.days))

Loops over time periods can also support chronological analysis and presentation. Here’s a way
to print out any year’s calendar by weeks.

Produce a weekly calendar of the current year:

import datetime
thisYear = datetime.date.today() .year
today = datetime.date(thisYear,1,1)

Loop over the days in the year, splitting them into weeks.

print (' ' * ((1+today.weekday()) % 7), end='"')
while today < datetime.date(thisYear+1,1,1):
ending = '\n' if today.weekday() == 5 else ' '
print ('{:2}'.format(today.day), end=ending)
today += datetime.timedelta(l)

print ()

Next, we will look into profiling the time performance of our code.

13https://docs.python.org/3/1library/datetime.html
14https://docs.python.org/3/library/datetime.html

https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html

