CS231 Instructor’s notes 2025

8 Character encodings

Key terms: bytes raw UTF-8 Unicode

Reading: World Wide Web Consortium’s “Character encodings: Essential con-
cepts”

Reading: Python Unicode HOWTOE

Exercise: Write a program that accurately guesses whether a specified UTF-8 text
file is written in Italian or Japanese.

It may seem obvious that an ‘L.’ is only and exactly an ‘L’, but at a low level we rely on rules
for describing and recognizing it. Visually we expect it to resemble the hands of an analog
clock showing 3:00. In storage it is composed of a sequence of binary digits (bits), often eight
of them, or one byte. Many binary character encodings are available, of fixed or variable width,
all of which are designed to serve certain written languages. Historical examples which include
Morse Code (variable width and English-based), ASCII (fixed width and English-based), and
ISO-8859-1 (fixed width and Western European-based).

The modern standard is UTF-8, which is variable width and interlingual, encoding the Unicode
Consortium’s character database. Happily, we can now mix as many languages as we want — as
long as we have terminals and fonts that support them. There are a few transliteration tools out
there (the best may be the International Components for Unicode). Python version 3 strings
contain Unicode codepoints, which are stored internally in a custom way for optimization, but
expressed and loaded by default as UTF-8.

Determine whether or not the file passed is encoded as UTF-8:
import sys

def check(file):

with open(file) as handle:
try:
handle.read()
return True
except UnicodeDecodeError:
return False

print(check(sys.argv[1]))

To describe the information that travels over a network or to and from a file more closely
we have bytes objects, a rawer form of data that does not necessarily represent characters.
Content is decoded according to the mode with which a file is opened, which can be given in
the encoding= argument to open(); binary mode, mode="'rb', acquires a bytes object rather than
a decoded string; this is needed for working with non-character-based “binary” files.

str.encode () makes bytes from a string while bytes.decode () does the opposite. Therefore, for
a string s, s == s.encode() .decode(). Is the inverse true? Not necessarily, because UTF-8 is a
variable width encoding, so some series of bytes are not valid. Both these methods will take an
errors= argument where the policy for encoding and decoding errors can be ignore or replace.

The strings ‘a’ and ‘4’ both contain one codepoint, but UTF-8 requires two bytes to encode the
latter: len('a'.encode('utf8'))> len('a'.encode('utf8')). Similarly, “raw” strings without
the default backslash interpretation are written r'hello'; note that len(r'\n')> len('\n').

Next week, we will address serialized data encodings.

17https://www.w3.org/International/articles/definitions-characters/
18https://docs.python.org/3/howto/unicode. html

https://www.w3.org/International/articles/definitions-characters/
https://docs.python.org/3/howto/unicode.html

