Tuberculosis

Caused by strains of closely related bacteria known as the Mycobacterium tuberculosis complex
- 30% world population infected
- 2012:
 - 1.3 million deaths
 - 8.6 million developed active TB
 - Each will infect 10-12 more/yr
 - 80% of these in 22 “high burden” countries
 - 1.1 million of these coinfected with HIV—most in Africa
- TB Leading cause of death in HIV+
 - 320,000 in 2012

Impact of TB
- 90% illness & death occurs in developing countries (focus of control)
- 75% disease & death occurs in 15-54 yr age group, having a large impact on income & productivity
 - Average patient loses 3-4 months of work due to illness & income drops 30-100%
 - Mean household spending on TB is 8-20% of income, varies by region
 - Thousands of children must leave school due to sick parents
- Drug resistance is a global threat: 20% new cases developed MDR-TB and 3.6% developed XDR-TB in 2012

History
- Evidence of disseminated disease (long bones, spine)
 - 6000 BC prehistoric stone age skeletons, Europe
 - 5000 y.o. Egyptian mummies
 - TB in spine in Egyptian paintings
 - M. tb DNA found in PreColumbian Peruvian mummies date to AD 800-1000
 - New evidence in 2008 shows human (not bovine) Mtb DNA in bones from human remains dating 9000 bc in Israel
TB Origins: Anthropologist’s view
- Domestication of cattle (8000-6000 BC) led to TB due to consumption of M.bovis from ingestion of milk
- Thought to spread along migration routes by milk-drinking Indo-Europeans
- After 1000 BC widespread pulmonary TB emerges “crowd disease.”
- M.bovis “evolved” into M. tuberculosis of humans

TB origins. A molecular view
- M. tuberculosis genome sequenced in 1998
- 2004 comparisons to M. bovis vaccine strain shows M. tb did not evolve from bovis.
- 2005 Pasteur Institute report rare strains of human TB from East Africa
 - Genetic analysis showed that these strains were the progenitors of M.tb & they may be 3 million years old
 - Disease affected early hominids
- 2008 Genetic evidence indicates
 - Most common ancestor of Mtb complex emerged 40,000 years ago, coinciding with Human migration out of East Africa
 - 10-20,000 yrs later one clade spread from humans to animals

TB has had many names
- Phthisis (greek: wasting)
- Scrofula (swollen lymph nodes)
- Kings evil (medieval europe)
- Lupus vulgaris (skin, werewolf legend?)
- Pot’s disease/Gibbus (TB of spine)
- Vampire’s Disease
- Consumption (fever/wasting)

Key Events in TB Control
- Seraksham movement
- 1904 National TB association
- Social reform
- Pasteurization of milk against M. tubercle
- BCG vaccine (after 1924)
- Skin testing X ray development
- Surgical pneumothorax
- Streptomycin (1944) & other antibiotics
- Directly Observed Therapy (DOT)

Resurgence of TB: factors
- Dismantling of TB programs, 70’s/80’s
- Social poverty/crowding:
 - Prisons
 - Homelessness
 - Drug users
- HIV pandemic
- Migration
 - 40% of TB in USA in foreign born persons from endemic areas (S. E. Asia)

Microbiology
- Slender, clumped bacilli
- Waxy cell walls
- Slow-growing
- Aerobes
M. tuberculosis

- 1882: Robert Koch reports isolation of bacteria from "tubercles"
- Develops tuberculin
 - Used for skin test
- 1905: Nobel Prize

TB transmission

- Spread through aerosolized droplets
 - From infectious person coughing, sneezing or talking
 - Close contacts of infectious person at highest risk
 - Sputum smear + case most contagious

TB INFECTION
- AFB in body
- Skin test often +
- Normal Chest X ray
- Sputum/culture -
- No symptoms
- NOT infectious
- NOT a case of TB

TB DISEASE
- AFB in body
- Skin test often +
- Abnormal chest X ray
- Sputum/culture +
- Symptoms: Cough, fever, weight loss
- Infectious w/o Rx
- Case of TB

Who gets active TB?

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>How many times higher is risk of disease?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>170</td>
</tr>
<tr>
<td>HIV</td>
<td>113</td>
</tr>
<tr>
<td>Recent (<2yr) infection</td>
<td>13</td>
</tr>
<tr>
<td>Immune suppression, cancer, diabetes</td>
<td>3-16</td>
</tr>
</tbody>
</table>

Detecting infection/latent TB

- Tuberculin skin test (ppd)
 - Read swelling at 48-72 hr. If >10 mm = +
 - > 5mm = + in immune suppressed & close contacts of active cases
- Memory T cell response
- Vaccines may test +
 - A separate blood test distinguishes true positives

People with TB infection
- No risk factors
 - 90% no disease
 - 10% risk of disease Over lifetime

People with TB infection
- HIV coinfection
 - 10% risk of disease/year

People with TB infection
- HIV coinfection
 - 10% risk of disease/year
Detecting disease
- Chest xray
- Stain sputum smear
- Culture bacteria
- Test all cultures for drug resistance

Disseminated “miliary” TB

Immune response to TB

TB drugs
- Isoniazid (INH) for prevention & Rx
- Streptomycin
- Rifampin
- Pyrazinamide
- Ethambutol
- Combinations must be used
- DOT very effective for cure
 - Global Fund treated an additional 5.4 million cases in 140 countries as of July 2009

Treating TB
- CDC recommends supervised DOT for first 2 months for all HIV+ & high risk persons
 - Includes 4 drugs
- Continuation phase
 - 2 drugs for 4 months
- Drug resistant TB
 - 5% of 8 million new cases =MDR
 - Resist first line drugs (INH, Rif)
 - Need 2nd line drugs up to 2 years
 - More costly & more side effects

DOTS Strategy
- Cure rates >95% including poor countries
- Prevents TB spread by curing infectious patients
- Prevents rise of drug resistance by ensuring compliance
- Costs $10 US for 6-8 months
- World Bank ranks as a highly effective prevention measure

Source: Global Fund Disease Report 2009
TB vaccine

- "Bacillus of Calmette & Guerin". BCG
 - Consists of live, attenuated M. bovis strain
 - Only protects against more severe childhood forms
 - Given to children in endemic countries to protect against miliary TB
 - Not routinely used in US as it eliminates utility of skin testing (causes false + reactions)
 - Can cause disease in immune suppressed
- 2012-2013, ten vaccines in trials, none better than BCG yet