Physiology 12

Blood Contents and Immune Function

Germans Ch 22

Blood contents

- Erythrocytes = red blood cells
 - Purpose, to carry hemoglobin
- Leukocytes = white blood cells
 - Purpose, immune system defense
- Platelets = cell fragments
 - Purpose, clotting factors
Blood contents

- Erythrocytes = red blood cells
 - Purpose, to carry hemoglobin

Blood cells

<table>
<thead>
<tr>
<th>Erythrocytes</th>
<th>Leukocytes</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cells</td>
<td>Neutrophils</td>
<td>Neutrophils</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Monocytes</td>
<td>Monocytes</td>
</tr>
<tr>
<td>Basophils</td>
<td>Lymphocytes</td>
<td>Lymphocytes</td>
</tr>
</tbody>
</table>

Production of blood cells

- Lymphoid stem cell
- Erythrocyte
- Neutrophil
- Eosinophil
- Basophil
- Monocyte
- Lymphocyte
- Megakaryocyte
- Platelet
e
Negatococyte
Regulation of blood cells is done by hormonal factors that influence stem cell development.

Erythropoietin

Decreased oxygen delivery

1. Erythropoietin secretion
2. Plasma erythropoietin
3. Bone marrow
4. Production of erythrocytes
5. Blood pH increase
6. Blood O₂ carrying capacity
7. Restoration of O₂ delivery

Hemostasis

Prevention of blood loss
How to prevent blood loss

- Constrict broken vessels
- Clot blood around sites of injury
- Broken endothelial cells expose collagen
 - Circulating Von Willebrand Factor binds collagen
 - Collagen binding alters VWF shape to bind platelets
 - Platelets aggregate around broken area

The Blood clotting reaction
Stopping blood clotting (anticoagulants)

- Natural
- Thrombomodulin = enzymatic inhibition from intact endothelial cells
Stopping blood clotting (anticoagulants)

- Natural
 - Thrombomodulin = enzymatic inhibition from intact endothelial cells
 - Antithrombin III = circulating factor that inhibits clotting factors when bound to heparin

- Drugs
 - Aspirin = Eicosanoid pathways and therefore inhibits thromboxane A2
 - Oral anticoagulants (cumadin etc)
Immune function

The body’s cellular defense

Nonspecific Immune Responses

- Physical barriers
 - Skin
 - Mucus
 - Coughing and Sneezing
Nonspecific Immune Responses

- Physical barriers
 - Skin
 - Mucus
 - Coughing and Sneezing
- Inflammation-Chemotaxis-Phagocytosis

Macrophage

Phagocytosis/intracellular destruction
Nonspecific Immune Responses

- Physical barriers
 - Skin
 - Mucus
 - Coughing and Sneezing

- Inflammation-Chemotaxis-Phagocytosis
- Complement system
Nonspecific Immune Responses

- Physical barriers
 - Skin
 - Mucus
 - Coughing and Sneezing

- Inflammation-Chemotaxis-Phagocytosis
- Complement system
- Interferon Production

Viruses

Role of interferon

(a) Virus
(b) Interferon
(c) Interferon receptor
(d) Antiviral protein

No replication
Specific immune Defenses

- Antigen recognition by antibodies

Immunoglobulin structure

- Specific antigen-binding sites
- One "prong"
- Light chain
- Heavy chain
- Fc ("stem")

Cellular immunity
How do B cells know what antibodies to produce?
Where does all this exchange take place?

- Lymph
- Spleen
- Blood
- Infected tissue
What’s the end result of a specific immune response?