
CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

Exercises - Basic Regular Expressions
The data files used in these exercises are in the directory /pub/cs/gboyd/cs160a/samples/Data
on hills. Make sure you examine the data file, run your command, and examine your output carefully to
determine if your command works correctly.

This exercise set has answers at the back. Use them to check your work.

All parts of this exercise set require basic regular expressions (BREs), and do not require 'turning on' the
extended regular expression operators or using the -E option.

Begin by reviewing the Basic Regular Expressions below:

General Rules

BREs are understood by every Unix command that understands regular expressions, particularly grep,
sed, more and vi.

• Always quote your regular expressions. For our class, use single-quotes.

• Regular expressions can match any part of the line. If you want to control this, use anchors

• Dont confuse regular expressions with shell wildcards. Regular expressions are used by
one of the commands above to match text. Shell wildcards are used by the shell to match
filenames. If you quote your regular expressions, the shell will not confuse them with a wildcard.

Consider the file t below:
$ cat t
abc
bc
abc1d
abcd12

Operator Matches Examples using the file t above

. (period) any single character grep '...' matches all but the second line of t

* 0 or more of the preceding
character (The character to the
left of the *) If * is the first
character in the RE, it matches
a literal *

* is a repetition operator. It repeats the character
before it
grep 'c*d' matches any line with a d (0 or more
c's followed by a d)
grep 'c.*d' matches the last two lines. (c followed by
0 or more of any character followed by a d)

[1d] one character that is 1 or d grep '[1d]' matches the last two lines

[[:class:]] one character that is a member
of class. Commonly-used
classes are
alpha, digit, space, upper,
lower, alnum, punct

grep '[[:digit:]]' matches the last two lines
grep '[[:digit:]][[:digit:]]' matches the
last line
grep '[[:digit:]][[:alpha:]]' matches the
third line

[^abc] one character that is any
except a or b or c

grep '[^d]' matches every line (since each line
has a character that is not d)
grep '[^d]$' matches all except the third line
grep '[^[:alpha:]]' matches the last two lines.
(Lines that have a non-alphabetic character.)

^ $ anchors. ^ matches the
beginning-of-line. $ matches
the end-of-line.

grep '^a' matches all but the second line
grep 'c$' matches the first two lines
grep '[[:digit:]]$' matches the last line.

Exercises-BasicRegularExpressions CS160A Page 1 of 6
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

Part One

Using the file input1, write commands to output only the lines with the following characteristics:

1. that contains the word hello anywhere on the line

2. that start with the word hello

3. that start with any number (any digit)

4. that ends with the word hello

5. that ends with any alphabetic letter (upper- or lower- case) or a question mark

6. that ends with a period (be careful here).

7. that contains only the word hello (it's the only thing on the line)

8. that contain only numbers

9. that contain only numbers, dashes and space characters.

10.containing more than 9 characters (at least 10 characters. A character can be anything)

11.that start with any whitespace character

12.that contain a string. This is anything within double quotes. Allow empty strings like ""

13.repeat the last command, but do not allow empty strings.

14.a phone number. This is three digits followed by a dash followed by four digits. Notice that this
outputs phone numbers with area codes as well.

15.This time your phone number should not have an area code - only the three digit, dash, four digit local
phone number. (You can assume that your phone number is preceded by a whitespace character.)

16.Last, allow your phone number to be seven consecutive digits as well as the three digit dash four digit
type.

Part Two

In this part we use a delimited file named Depts. It is in the samples directory discussed above. Look
at the file Depts. Its format is DeptID:DeptName:EmpID:EmpName The EmpID is an integer.

Write commands to output only the lines with the following characteristics:

1. the DeptID begins with an E

2. the DeptID has exactly two digits

3. The DeptName starts with M

4. The DeptName is more than one [alphabetic] word. The words can be separated by multiple spaces.

5. The EmpID is three digits

Part Three

In this part we will practice with matching lines from other delimited files. The first file, named sorttest,
uses the '#' character as the delimiter and it has five fields. Start by examining the sorttest file in
the samples directory. Notice that each field has a different format. This, coupled with which field we are
interested in, enables us to make simplifying assumptions when working problems. (We will assume the
sorttest file is much larger, and this is just a representative sample, so we must be conservative
about our assumptions.)

Example:

Output the lines whose last field is Administrator (exactly).

Solution:

Since we are interested in the last field, we know that the last field is preceded by # and followed
by the end of the line. We can use these facts to write a simple RE:
grep '#Administrator$' sorttest

Exercises-BasicRegularExpressions CS160A Page 2 of 6
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

1. Output lines whose third field is D14

2. Output lines whose first field is a three digit number.

3. Output lines whose next-to-last field has at least one uppercase letter in it

Next we will use a standard system file, the /etc/passwd file, to do a few more interesting problems.
Take a look at this file using tail /etc/passwd. You will see lines that look like this:

gboyd:x:3496:208:Unix/Linux Guy:/users/gboyd:/bin/bash

where the fields are username, pass, userid, groupid, gecos, homedir, shell

We are going to combine our regular expressions with other tools to extract fields from records we
specify.

4. Output the shell field of the user gboyd

5. Output the homedir field of the user cmetzler

6. Output the username field of the account with the userid 10025

7. Output all the usernames whose groupid field is 554

8. Output all the usernames whose gecos field is empty

9. Output the username field of all users whose userid is five digits and whose shell is not
/bin/bash

Exercises-BasicRegularExpressions CS160A Page 3 of 6
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

Answers

1. grep 'hello' input1

2. grep '^hello' input1

3. grep '^[[:digit:]]' input1

4. grep 'hello$' input1

5. grep '[?[:alpha:]]$' input1

6. grep '[.]$' input1 (or, better, grep '\.$' input1) (Remember: . is an operator!)

7. grep '^hello$' input1

8. grep '^[[:digit:]]*$' input1 (This will match empty lines. Can you fix it?)

9. grep '^[[:digit:] -][[:digit:] -]*$' input1 (This matches lines with only 1 or more
characters that are digits spaces or dashes. Use this example to fix the previous one.)

10.grep '..........' input1 (If it contains more than 10 characters, it contains 10.)

11.grep '^[[:space:]]' input1

12.grep '".*"' input1 or, better, grep '"[^"]*"' input1

13.grep '"..*"' input1 or, better, grep '"[^"][^"]*"' input1

14.grep '[[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]]
[[:digit:]]' input1

15.grep '[[:space:]][[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]]
[[:digit:]][[:digit:]]' input1 (This is not perfect, as there can be more digits after the
phone number.)

16.grep -e '[[:space:]][[:digit:]][[:digit:]][[:digit:]]-[[:digit:]]
[[:digit:]][[:digit:]][[:digit:]]' -e '[[:space:]][[:digit:]][[:digit:]]
[[:digit:]][[:digit:]][[:digit:]][[:digit:]][[:digit:]]' input1 (This will be
much easier with extended regular expressions.)

Part Two

In a colon(:)-delimited file, the regular expression '[^:]*:' can be used to skip the contents of a field.
(It means any number of non-colons, followed by a colon). Thus, '^[^:]*:x' is a regular expression
that matches x at the start of the second field of a colon-delimited file.

1. grep '^E' Depts

2. grep '^.[[:digit:]][[:digit:]]:' Depts (Deptid starts with one alphabetic character.)

3. grep '^[^:]*:M' Depts

4. grep '^[^:]*:[[:alpha:]][[:alpha:]]* *[[:alpha:]]' Depts (note: two spaces between
the asterisks)

5. grep ':[[:digit:]][[:digit:]][[:digit:]]:[^:]*$' Depts (Matches a three-digit
number in the next-to-last field.)

Part Three

1. Since the format of the third field is unique, all we need to do is specify the field delimiter on each
side of our search string (to separate D14 from D144, for example): grep '#D14#' sorttest

2. Since it is the first field, all we need do is specify the beginning-of-line on the left and the field
delimiter on the right: grep '^[[:digit:]][[:digit:]][[:digit:]]#' sorttest

3. This is more difficult, as every field except the first can have an uppercase letter. The only solution
here to restrict our match of an upper-case letter to the fourth field is to specify the entire line either
starting on the left (the first through fourth fields) or on the right (the fourth and fifth fields). Of course,

Exercises-BasicRegularExpressions CS160A Page 4 of 6
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

the latter is shorter.

We are looking for an upper-case character [[:upper:]]. However, this can be in any position in
the field, and to get to it we must skip the other characters. These characters can be anything except
the field delimiter. An RE for a single character that is not # is [^#], so we can specify [part of] the
fourth field by '[[:upper:]][^#]*#' (The last # separates it from the fifth field.)

To distinguish the # in the RE above as the fourth # in the line, we must specify the last field. We
don't care what is in it, so each character can be any character except #: '[^#]*' and it is
followed by the end-of line. Thus our command is grep '[[:upper:]][^#]*#[^#]*$' sorttest

In each of the examples below, execute the command once before the cut command to see the
result of the grep, then add the cut command when you are satisfied with the result.

4. This one is simple: specify the contents of the first field using the BOL anchor and delimiter. This
isolates the correct line, then extract the field:

grep '^gboyd:' /etc/passwd | cut -d: -f7

5. Only the username and field number change:

grep '^cmetzler:' /etc/passwd | cut -d: -f6

6. This is a bit more difficult, as there are two internal fields that are integers. It looks like the userid
field is preceded by a field that is always x. If this is reliable, we have a simple solution:

grep 'x:10025:' /etc/passwd | cut -d: -f1

However, if the use of the preceding field is not reliable, we must skip to the correct field

grep '^[^:]*:[^:]*:10025:' /etc/passwd | cut -d: -f1

7. Again, if you can make the simplifying assumption that the groupid field is numeric and the pass
field cannot be, you have a simple solution:

grep '[[:digit:]]:554:' /etc/passwd | cut -d: -f1

If this is not a valid assumption, you must use the general solution
grep '^[^:]*:[^:]*:[^:]*:554:' /etc/passwd | cut -d: -f1

8. It looks like the only field that can be empty is the gecos field. If this is true, the solution is simple:

grep '::' /etc/passwd | cut -d: -f1

If this is not a valid assumption you have a bit of a mess again. Since the gecos field is field #5 of 7
it is easiest to specify the pattern from the far end of the record:

grep '::[^:]*:[^:]*$' /etc/passwd | cut -d: -f1

9. We will generalize the [simpler] solution where we searched for a specific userid before to get the
records with 5-digit userids:

grep 'x:[[:digit:]][[:digit:]][[:digit:]][[:digit:]][[:digit:]]:' /etc/passwd

This is very difficult, so we will introduce an extended regular expression here:
grep -E 'x:[[:digit:]]{5}:' /etc/passwd

(Note that these are all the student accounts, so the output is about 8000 lines.) Now the output of
this command must be searched for lines whose shell is not /bin/bash. This is

grep -v ':/bin/bash$'

Putting it all together
grep -E 'x:[[:digit:]]{5}:' /etc/passwd | grep -v ':/bin/bash$' | cut -d: -f1

Interestingly, this semester, many of these accounts have the shell field /bin/drop. We probably want
to exclude them:
grep -E 'x:[[:digit:]]{5}:' /etc/passwd | grep -v ':/bin/bash$' |

Exercises-BasicRegularExpressions CS160A Page 5 of 6
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-BASICREGULAREXPRESSIONS Boyd

grep -v ':/bin/drop$' | cut -d: -f1

Exercises-BasicRegularExpressions CS160A Page 6 of 6
This document was produced with free software: LibreOffice.org on Linux.

