
CS160A EXERCISES-FILTERS2 Boyd

Exercises-Filters2
In this exercise we will practice with the Unix filters cut, and tr. We will also practice using paste,
even though, strictly speaking, it is not a filter. In addition, we will expand our use of grep to add the
options -c, -v, -e, -i, -n, and -l and the use of simple regular expressions. Last we will do a
handful of real-life problems to put these tools together to do real work.

There is a lot of work in this exercise set. Do enough of the problems to master a filter, then move on to
the next one. Do not ignore the final part where all the filters are used together. This is the most
important part.

For the duration of these exercises, you will be using test files from the directory samples/Data
beneath the public data area on hills. You will also need to create temporary files from time to time, so
you can either get personal copies of the files you need and work in your own area, or you can work in
the Data directory and place your temporary files in your home directory. This is what the answer key
does. Instead of data files, some of the problems use the output of various Linux commands as input to
work on.

Part One - cut/paste

Description

The filter cut slices its input vertically either by character position or using a delimiter and a field
number. cut cannot rearrange fields. If you want to generate some output that takes fields #3 and #5 of
one file and displays them as field #5 followed by field #3 you must cut the fields out individually and
then use paste to paste them together. If you are using fields, the default delimiter for both cut and
paste is a tab.

Review your class notes and text for the syntax of the cut and paste commands, or look at their
manual pages.

Unless otherwise directed, you should just display the results of your commands on the screen.

Exercises

1. Look at the output of the date command. Using cut and column positions, create a file that contains
the month and another that contains the day of the month. Then output the date as day month with a
space between the day and the month.

Look at the file samples/Data/Hired_Data beneath the class public directory. Its format is
Name:Dept:Job Then use a command to output

2. the Names only

3. the Names and Jobs, separated by a :

4. the Jobs then Names, separated by a : (this takes several commands)

5. Look at the file Emp_Data. Output the Names field as First Last rather than Last, First

6. Look at the files st2 and st3. Note that they are different lengths. Output a list that has the first field
of st3 followed by the third field of st2, keeping the same delimiter. How was the difference in
length resolved?

Part Two - tr

Description

The tr command translates, deletes, complements and squeezes characters. We will cover all of these
except complement. (Complement is very useful, especially in conjunction with the other options,
however. Try the following command on a text file:
cat file | tr -cs '[[:alnum:]]' '[\012*]')

tr needs one or two character strings to specify the characters that it is to translate. A shorthand to
enumerating these characters is to use a character set. Thus, the character string 'abcde' could be

Exercises-Filters2 CS160A Page 1 of 5
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-FILTERS2 Boyd

specified as '[a-e]'. Just like wildcards, you can also use a character class in a character set.
Character sets (and classes) are part of modern regular expressions, although there are a few minor
differences we will discuss later. Here are the classes:

class meaning class meaning

upper any uppercase character alpha any alphabetic character

lower any lowercase character digit any number

alnum any alphabetic or digit punct any punctuation character

space any whitespace character ascii any ASCII character

print any printable character xdigit any hexadecimal digit

Examples:

tr -d '[[:alpha:][:punct:]]' - The set contains all characters that are members of either the
class alpha or punct. (Delete all control and punctuation characters)

tr '[[:upper:]]' '[[:lower:]] ' - lowercase all uppercase characters.

One more shortcut is helpful: to extend the size of the second set to match the first by duplicating the
last element, simply put the last string in a character set and follow it by *

tr 'aeiou' '[-*]' - replace all vowels by dashes

Exercises

1. Using echo, send tr the string "UPPER lower", telling it to delete all blanks. (Those are
blanks between UPPER and lower)

2. Redo the last command, telling tr to squeeze out repeated blanks.

3. Tell it to squeeze out repeated blanks and change those remaining to pound symbols (#)

4. Last, squeeze out leading blanks, then translate uppercase characters to lowercase characters. (this
is making use of the fact that tr can translate a sequence of characters to another sequence using a
1-for-1 substitution)

5. Examine the file sorttest. Output the file on the screen after changing the # delimiter to a comma.

Look at an ls -l listing of a directory. You want to cut out the size and name field, but cut relies on a
single delimiter between fields. Let's design this solution:

6. take the ls -l output and squeeze successive blanks to a single one.

7. now add cut so that only size and name is output.

Part Three - grep

This part covers the grep command, adding options -e -n and -l The later ones use simple regular
expressions. The files can be found in the directory samples/Data beneath the public data area.

Using grep only, display the lines in the file u2 that

1. start with cow

2. start with the word It

3. contain exactly (consist of) cow

4. contain either cow or animal

5. contain both cow and animal, anywhere on the line.

6. output the lines in u2 that start with cow with the line number in the file

7. output the number of lines in u2 that contain cow

8. output the names of the files in the Data directory that contain cow

Exercises-Filters2 CS160A Page 2 of 5
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-FILTERS2 Boyd

9. output the number of lines in each file in Data that contain cow

10.output the number of lines in u2 that don't contain cow

11.output the lines of the passwd file whose shell field (the last field) is /usr/bin/bash

12.output the lines of passwd whose shell field is neither /usr/bin/bash nor /usr/bin/ksh

13.output the lines of passwd whose login field (the first field) is three characters long.

14.output the lines of st.bad that have an empty field

Part Four

This last section has problems that put all the filters together to solve real-world problems. Some of them
are challenging and are good sources of questions for the Google Group.

Note that we are only using simple regular expressions in this exercise set, so you must do a bit more
work on some of the problems.

1. Output the login (field #1) of all entries in passwd whose default group (field 4) is 200.

2. Output a list of the different shells used in the file passwd (the last field)

3. how many different default groups (field #4) are there in passwd?

4. How many members (members are in field #4, separated by commas) are there in the line in the
group file whose group id (field #3) is 3021?

5. Create a file (in your home directory) named E14dept with only the names (field 2) of each person in
the file Emp_Manager1 whose dept field (field 3) is E14. The list should be sorted by the person's id
number (field 1)

6. Student accounts on hills have the default group of 506. Output the number of lines of /etc/passwd
whose default group (field 4) is not 506 (i.e., who are not students). Compare this to the number of
students in the file. Any predictions?

In the directory /pub/cs/gboyd/cs160a/filters2 there is a set of dummy files and directories. Use
it for the following problems:

7. List the names of all objects that are readable by group.

8. List the names of the files (only) that are both readable by group and by other.

9. List the names of the directories (only) that are not executable by other.

Answers

Part One

1. date | cut -c5-7 > ~/mon
date | cut -c9-10 > ~/day
paste -d' ' ~/day ~/mon
rm ~/day ~/mon

2. cut -d: -f1 Hired_Data

3. cut -d: -f1,3 Hired_Data

4. cut -d: -f1 Hired_Data > ~/names
cut -d: -f3 Hired_Data >~/jobs
paste -d: ~/jobs ~/names
rm ~/jobs ~/names

5. cut -d, -f1 Emp_Data > ~/last
cut -d: -f1 Emp_Data | cut -d, -f2 > ~/first
paste -d' ' ~/first ~/last
rm ~/first ~/last

6. cut -d# -f1 st3 > ~/1

Exercises-Filters2 CS160A Page 3 of 5
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-FILTERS2 Boyd

cut -d# -f3 st2 > ~/3
paste -d# ~/1 ~/3
rm ~/[13]

Part Two

1. echo "UPPER lower" | tr -d ' '

2. echo "UPPER lower" | tr -s ' '

3. echo "UPPER lower" | tr -s ' ' | tr ' ' '#'

4. echo "UPPER lower" | tr -s ' ' | tr '[[:upper:]]' '[[:lower:]]'

5. tr '#' ',' < sorttest

6. ls -l | tr -s ' '

7. ls -l | tr -s ' ' | cut -d' ' -f5,9-
(the trailing - gets filenames with blanks but has a problem with symlinks)

Part Three

1. grep "^cow" u2

2. grep "^It" u2

3. grep "^cow$" u2

4. grep -e "cow" -e "animal" u2

5. grep "cow" u2 | grep "animal"

6. grep -n "^cow" u2

7. grep -c "cow" u2

8. grep -l "cow" *

9. grep -c "cow" *

10. grep -cv "cow" u2

11. grep ':/usr/bin/bash$' passwd

12. grep -v -e ':/usr/bin/bash$' -e ':/usr/bin/ksh' passwd

13. grep '^...:' passwd

14. There are three possibilities for an empty field: the first field (^#), the last field(#$), or a middle
field(##):
grep -e '^#' -e '#$' -e '##' st.bad

Part Four

1. To do this with simple REs, you first must remove all non-pertinent information. All we need to answer
the question is the default group and the login. Then look for the correct group, and extract the logins:
cut -d: -f1,4 passwd | grep ':200$' | cut -d: -f1

2. cut -d: -f7 passwd | sort -u

3. cut -d: -f4 passwd | sort -u | wc -l

4. cut -d: -f3,4 group | grep '^3021:' | cut -d: -f2 | tr ',' '\n' | wc -l

5. sort -k1,1n Emp_Manager1 | cut -d: -f2,3 | grep ':E14$' | cut -d: -f1 >
~/E14dept

6. cut -d: -f4 /etc/passwd | grep -c '^506$' compare this to wc -l /etc/passwd. At
the time of this writing (end of summer), there were about 8900 students and 200 non-students

Exercises-Filters2 CS160A Page 4 of 5
This document was produced with free software: LibreOffice.org on Linux.

CS160A EXERCISES-FILTERS2 Boyd

The tricky part of these last ones is preparing the data. You only need the permissions fields and the
names field, but to cut them out you must fix the delimiters by sqeezing out extra spaces like this:
ls -l | tr -s ' ' | cut -d' ' -f1,9-

Note that we added 9 through the end in case a filename contained spaces. All of the commands below
have this sequence as part:

7. ls -l | tr -s ' ' | cut -d' ' -f1,9- | grep '^....r' | cut -d' ' -f2-

8. ls -l | tr -s ' ' | cut -d' ' -f1,9- | grep '^-...r..r' | cut -d' ' -f2-

9. ls -l | grep '^d' | tr -s ' ' | cut -d' ' -f1,9- | grep -v '^.........x' |
cut -d' ' -f2-

Exercises-Filters2 CS160A Page 5 of 5
This document was produced with free software: LibreOffice.org on Linux.

