Creating an XML Document
XML can be created with a basic text editor such as Notepad or TextEdit.

The Structure of an XML Document
An XML document consists of three parts: the prolog, the document body, and the epilog.
1. The prolog includes the following parts:

a. An XML declaration indicating that the document is written in the language of XML

b. Comment lines used to provide additional information about the document contents (optional)

c. Processing instructions to be run by the program reading the XML document (optional)

d. A document type declaration to provide information about the rules used in the document’s vocabulary (optional)

2. The document body occurs after the prolog, which contains the document’s content in a hierarchical tree structure.

3. The epilog (optional) occurs after the document body and contains any final comments or processing instructions.

The XML Declaration

The first part of the prolog (the first line in any XML document) is the XML declaration signaling to the program reading the file that the document is written in XML, and providing information about how that code is to be interpreted by the program.
<?xml version="version number" encoding="encoding type" standalone="yes|no" ?>
Version number = is the version of the XML specification being used in the document. The default version value is “1.0”.

Encoding type = identifies the character set used in the document. The default encoding scheme is “UTF-8” which matches most English language characters. “ISO-8859-1” (Latin-1) this character set includes many characters from non-English Western European languages.

Standalone attribute = indicates whether the document contains any references to external files.(usually reference to DTDs contained in external files).

“yes” indicates that the document is self-contained.

“no” indicates that the document requires additional information from external document. The default value is “no”.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
XML is case sensitive, quotation mark (?) and quotes (" or ') are also needed.
Inserting Comments

Comments may appear anywhere in an XML document. It is a good idea to insert a comment somewhere in the prolog (after the XML declaration) to provide additional information about what the document will be used for and how it was created. Comments are ignored by programs reading the document and do not affect the document’s content or structure.

(XML comments follow the same syntax as HTML comments)

<!--
2011-10-20

Hans Yip

This XML document contains contact information.

-->
Working with Elements

The document body consists of the elements to be stored in the document.

Elements are the basic building blocks of XML files, containing data to be stored in the document. The content is stored between an opening tag and a closing tag.

<element>content</element>

Element = is the name given to the element

Content = represents the content of the element

<element> and </element> are the opening and closing tags

<phone>415-123-4567</phone>
NOTE: there are a few important points to remember about XML elements:

1. Element names are case sensitive

2. Element names must begin with a letter or the underscore character (_) and may not contain blank spaces.

3. Element names cannot begin with the letters “xml” because those characters are reserved for special XML commands.

4. The name in an element’s closing tag must match the name in the opening tag. (the following example is an error)

<PHONE>415-123-4567</phone>

Empty Elements
Not all elements contain content. An open element or empty element is an element that contains no content.
Empty element tags are entered using a one-sided tag syntax:

<element />

Element = is the name of the empty element. (Note: an empty element consists of a single tag – there are no opening and closing tags)

Why empty element? One reason is to mark certain sections of the document for programs reading it. Empty elements can contain attributes that can be used to store information.
<friend region="us" />

Nesting Elements

In addition to content, elements can also contain other elements. An element contained within another element is said to be nested.

<contact>

<friend>

 <name>name1</name>

 <phone>415-123-4567</phone>

 <email>name1@abc.com</email>

</friend>

<friend>

 <name>name2</name>

 <phone>415-234-5678</phone>

 <email>name2@abc.com</email>

</friend>

</contact>
A nested element is a child element of its parent element.

Elements that are side-by-side in a document’s hierarchy are sibling elements.

In the above code, each friend element is a sibling of the other friend elements, and each is a child of the contact element.

The Element Hierarchy

All of the elements in the body are children of a single element called the root element or document element.

In the above code, contact element is the root element.

NOTE: if an XML document does not include a root element, it is not considered well-formed and is rejected.

Charting the Element Hierarchy

A quick way to view the overall structure of a document body is to chart the elements in a tree structure.

	Symbol
	Description

	[none]
	The parent contains a single occurrence of the child element.

	?
	The child element occurs once or not at all.

	*
	The child element occurs any number of times.

	+
	The child element occurs at lease once.

The symbols ?, *, and +, were not chosen at random. They are part of the code used in creating DTDs to validate XML documents.
Working with Attributes

Every element in an XML document can contain one or more attributes. An attribute describes a feature or characteristic of an element.

<element attribute="value"> … </element>

Attribute = is the attribute’s name

Value = is the attribute’s value

NOTE: attribute values are text string, and thus must always be enclosed within either single or double quotes.

<phone type="cell">415-123-4567</phone>
Attribute values are text strings, therefore, they may contain spaces and almost any character other than angle brackets (< and >).

You can choose any name for an attribute, subject to the following constraints:

1. The attribute name must begin with a letter or underscore (_).

2. Spaces are not allowed in attribute names.

3. Attribute names should not begin with the text string "xml".

4. An attribute name can appear only once within an element.

5. Attribute names are case sensitive.

Using Character and Entity References
A common mistake in XML documents is to forget that the ampersand symbol (&) is interpreted by the XML processor as a character reference and not as a character. For example,

<name>name1 & name2</name>
results in an error message because the & symbol is not followed by a recognized character reference number or entity name. To avoid this problem, you need to use the & or & character reference in place of the ampersand symbol:

<name>name1 & name2</name>
Character references are sometimes used to store the text of HTML code within an XML element. To store the HTML tag in an element named htmlcode, you need to use character references to reference the < and > symbols contained in the HTML tag.
<htmlcode></htmlcode>

	Symbol
	Character Reference
	Entity Reference
	Description

	
	©
	
	Copyright symbol

	
	®
	
	Registered trademark symbol

	tm
	™
	
	Trademark symbol

	<
	<
	<
	Less than symbol

	>
	>
	>
	Greater than symbol

	&
	&
	&
	Ampersand

	“
	
	"
	Double quote

	‘
	
	'
	Apostrophe (single quote)

	
	£
	
	Pound sign

	
	€
	
	Euro sign

	
	¥
	
	Yen sign

Understanding Text Characters and White Space
Text characters fall into three categories: parsed character data (PCDATA), character data (CDATA), and white space.
1. Parsed Character Data
Parsed character data, or pcdata, consists of all those characters that XML treats as parts of the code of XML document. PCDATA can be parsed by XML, HTML, XHTML parser. Therefore, < will be converted to <, & will be converted to &.
2. Character Data
Character data is not processed, but is treated as pure data content. Character data will not be parsed by the parser. Therefore, < and & will not be converted.

PCDATA -----> Parser -------> CDATA
3. White Space
The third type of character that an XML document can contain is white space. White space refers to any space (pressing the spacebar), new line character (pressing the Enter key), or tab character (pressing the Tab key) in a document.

HTML applies white space stripping in which consecutive occurrences of white space are treated as a single space.

White space is treated differently in XML. There is no white space stripping for element content, which means preserving the space, new line character, and tab character.

NOTE: When a document is read through the Internet Explorer browser, Internet Explorer transforms XML code into HTML, and in the process applies white space stripping to any element content.

When white space appears in places other than element content, XML treat it in the following manner:
a. White space is ignored when it is the only character data between element tags

b. White space is ignored within a document’s prolog and epilog and within any element tags

c. White space within an attribute value is not ignored and is treated as part of the attribute value.

NOTE: White space is ignored unless it is part of the document’s data.

Creating a CDATA Section
Sometimes an XML document needs to store large blocks of text containing the < and > symbols. In this case, it would be cumbersome to replace all of the < and > symbols with the < and > character references, and the code itself would be difficult to read.

As an alternative to using character references, you can place large blocks of text in a CDATA section. A CDATA section is a large of block text that XML treats as character data only.

<![DATA[

Character data

]]>

A CDATA section may contain most markup characters, such as <, >, and &, and these characters are interpreted by XML parsers as text rather than markup commands.

A CDATA section:

a. May be placed anywhere within in a document

b. Cannot be nested within other CDATA sections

c. Cannot be empty

d. “]]>” cannot occur within a CDATA section, because it is the marker ending the CDATA section

<htmlcode>

<![CDATA[

<h1>Contact information</h1>

<h2>Friends information</h2>

]]>

</htmlcode>
The text in this example is treated by XML as character data, not pcdata. Therefore, a processor would not read the <h1> and <h2> characters as element tags.

Processing an XML Document

XML Parsers

When an XML document is created, it needs to be evaluated by a program known as an XML processor or XML parser. It interprets a document’s code and verifies that it satisfies all of the XML specifications for document structure and syntax. In addition, XML parser interprets pcdata in a document and resolves any character or entity references.
Once an XML document is parsed, the XML parser may also be able to display the document’s contents to the user.

The author writes XML document ----> XML document is submitted to XML processor ---> The processed document is then displayed to the user

Web Browsers

Most current browsers include an XML parser of some type. Microsoft developed an XML parser called MSXML for its Internet Explorer browser. MSXML was built directly into the Web browser for Internet Explorer versions 5.0 and above. The current release of MSXML is MSXML 4.0. Starting with version 6.0, Netscape also includes a built-in XML parser, as do Firefox and version 8.0 of Opera.

When an XML document is submitted to a browser, the browser first checks for syntax errors. If it finds none, the browser displays the contents of the document. Older browsers might display only the data content, while more current browsers display both the data and the document structure. Current browsers usually display XML documents in a expandable/collapsible outline format that allows users to hide nested elements.

Formatting XML Data

 Unlike HTML documents, XML documents do not include any information about how they should be rendered. Rendering is determined solely by the parser processing the document. Because an XML document doesn’t indicate how its data is to be formatted or displayed, you have to link the document to a style sheet if you want to have control over the document’s appearance. The XML document and the style sheet are then combined by an XML parser to render a single formatted document.

XML document + Style Sheet => rendered web page

Style Sheet Languages

 Two main style sheet languages are used with XML documents.
1. Cascading Style Sheets (CSS): is the standard developed for use with HTML on the World Wide Web. CSS is supported by most browsers and is relatively easy to learn and use.

2. Extensible Stylesheet Language (XSL): is a style sheet language developed for XML. XSL is actually an XML vocabulary that can be used to transform XML content into other document formats, such as HTML or formats used by word processors. While these features make XSL more powerful than CSS, it is not as easy to use as CSS, and does not have the same degree of browser support as CSS at this time.

Applying an External CSS Style Sheet to XML document

If we would like to display the XML document on to the web, we can apply external CSS style sheet to an XML document by creating a link inside the XML document using processing instruction.
<?xml-stylesheet type="style" href="url" ?>
e.g.

<?xml-stylesheet type="text/css" href="contact.css" ?>
References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

