XML Namespaces

If you want to combine some of your XML documents with someone else’s, you find out that they have used some of the same names for elements that you have. [Element name collision]

The solution to this problem is to group the element names from each XML document into its own space. Then, when referring to a particular element, it would be identified with the space in which it resides. This format would provide a way to distinguish elements in one group of XML documents from the other. 

This group of element names, is actually called a namespace, and the identifier I used is called a namespace name.  [namespace names are written in the form of a URI (Uniform Resource Identifier)]
Namespace is:

xmlns="namespace name"
e.g. xmlns = "http://fog.ccsf.edu/~hyip/cnit131a/personal"
[A namespace name should be in the form of a URI. I recommend using a URL format. The URL does not have to (and typically will not), point to an actual file.]

Declaring a Default Namespace
Once you have designed a namespace name, you can declare it as the default namespace for your XML document. [or you can define at the element level.]
<root xmlns = "http://www.abc.com/ns/topic_desc/1.0">

<name>some data</name>

<child_element xmlns = "http://www.abc.com/ns/topic2/2.0">

<name>more data</name>
</child_emement>

</root>

Declaring a Namespace Name Prefix
Declaring a default namespace for an element applies to all that element’s children. You can also choose to label specific individual elements in your document with a namespace, and not affect other elements. To do so, you can declare a special nickname, or prefix, for the namespace, and then use that prefix to label the individual elements specifically.

<root xmlns = "http://www.abc.com/ns/topic_desc/1.0"
          xmlns:pfx = "http://www.abc.com/ns/topic2/2.0">

<name>some data</name>

<pfx:child_element >

<pfx:name>more data</pfx:name>

</pfx:child_emement>

</root>

Labeling Elements with a Namespace Prefix
Once you have declared a prefix for a namespace name, you can use that prefix to label individual elements. In this way, you can assign these elements to different namespaces in your XML, without affecting the siblings or children of those elements

<apfx:root xmlns:apfx = "http://www.abc.com/ns/topic_desc/1.0"
          xmlns:pfx = "http://www.abc.com/ns/topic2/2.0">

<apfx:name>some data</apfx:name>

<pfx:child_element >

<pfx:name>more data</pfx:name>

</pfx:child_emement>

</apfx:root>

How Namespaces Affect Attributes
While you could associate an attribute with a specific namespace by prefixing it with the appropriate prefix, it is almost never necessary. Attributes are already made unique by the element that contains them.

<phone format="dash">415-123-4567</phone>

<ss_num format="no dash">123456789"</ss_num>

If an attribute has no prefix, which they rarely do, then it is considered to be “in no namespace” (because default namespaces do not apply to attributes). So, the attribute is locally scoped, which is a fancy way of saying that it is identified by the namespace of the element that contains it.
Although quite uncommon, there are cases where you would need to associate an attribute with a specific namespace, by pre-pending it with the appropriate prefix. For example, you need to combine two elements from different namespaces into a single element, and both have an attribute with the same name. In this case, you would need to differentiate each attribute, since a single element cannot have multiple attributes with the same name. By prefixing each attribute with their respective namespace prefix, you would be creating unique attributes, because an XML processor considers the prefix part of an attribute’s name.
XML 1:
<picture file="name1.jpg" w="200" h="200" />
XML 2:

<picture file="../local/name1.jpg" />

Combined XML:

<picture apfx:file="name1.jpg" pfx:file="../local/name1.jpg" apfx:w="200" apfx:h="200" />

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646  ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

