Combining XML Vocabularies
Compound document: A document that combines several vocabularies is known as a compound document.
Creating a Compound Document
Combining “personal.xml” and “resume.xml” to form a “self_information.xml”:

[Review Single XML documents: personal.xml (with personal.css),

resume.xml (with resume.css);

Compound XML document: 00_name_collision_self_information.xml (with personal.css and resume.css)]

Understanding Name Collision

Name collision occurs when the same element name is used from different XML vocabularies within the same compound document. (the title and name elements are name collision from the above example).
Working with Namespaces

A namespace is a collection of element and attribute names.

Applying a namespace to an XML document involves two steps:

1. Declaring the namespace

2. Identifying the elements and attributes within the document that belong to that namespace.

Declaring a Namespace

To declare a namespace you add the following attribute to an element within an XML document:
xmlns:prefix="uri"
prefix = is a string of characters that you’ll add to element and attribute names to associate them with the declared namespace.

uri = is a Uniform Resource Identifier (URI) – a string of characters that uniquely identifies a resource, which in this case is the declared namespace.

<per:self_info xmlns:per="http://fog.ccsf.edu/~hyip/cnit131a/personal">
NOTE: There is no limit to the number of namespace attributes that can be declared within an element. Once a namespace has been declared, it can be applied to any descendant of the element. Since you often want to make a namespace available to all elements within a document, some XML authors add all namespace declarations to the document’s root element.

NOTE: to declare a default namespace, add the xmlns attribute without a prefix as follows:

xmlns="uri"
Understanding URIs

The URI in the namespace looks like a Web address you might use in creating a link to a Web site; however, that’s not its purpose. The purpose of a URI is to provide a unique string of characters identifying a resource.
One version of a URI is Uniform Resource Locator (URL), which is used to identify the location of a resource on the Web. (such as web page)
Note that the URI doesn’t actually have to point to a real site on the Web.

Another type of URI is a Uniform Resource Name or URN. A URN provides a persistent name for a resource, independent of that resource’s location. URNs take the form:

urn:NID:NSS

NID is the namespace identifier and NSS is a text string specific to that namespace. The NID indicates how to interpret the text string in the NSS. For example, the following URN uniquely identifies a book by its ISBN number:
urn:isbn:0-619-01969-7

NOTE: URL can be thought of as a unique address of a specific location, a URN can be thought of as a unique name that is associated with a specific item. Currently URNs are rarely used in place of URLs, but this may change in the future.

Using URLs or URNs is widely accepted in declaring namespaces, but nothing prevents you from using almost any unique string identifier. The main requirement is that a URI be unique so as not to be confused with the URIs of other namespaces.

Applying a Namespace to Elements
First you must declared namespaces to your xml document, and you have to indicate which elements in the document belong to which namespaces.

[Review 01_self_information.xml]
<per:self_info xmlns:per="http://fog.ccsf.edu/~hyip/cnit131a/personal"

xmlns:res="http://fog.ccsf.edu/~hyip/cnit131a/resume">

To apply an XML namespace, you give elements and attributes qualified names. A qualified name or qname is an element name consisting of two parts: the namespace prefix that identifies the namespace, and the local part or local name that identifies the element or attribute within that namespace.

An unqualified name is a name without a namespace reference. The general form for applying a qualified name to a two-sided tag is:

<prefix:element>…..</prefix:element>

Where prefix is the namespace prefix and element is the local part.
<per:self_info xmlns:per="http://fog.ccsf.edu/~hyip/cnit131a/personal"

xmlns:res="http://fog.ccsf.edu/~hyip/cnit131a/resume">

<per:title>Mr.</per:title>

<per:name>Name 1</per:name>

</per:self_info>

After we have added several namespace prefixes to the various elements in the XML document, it is a good idea to verify that we have not added any syntax errors to the file. To do this we need to reload the file in the Web browser.

Applying a Default Namespace

You can declare a default namespace by omitting the prefix in the namespace declaration. Any descendant element or attribute is then considered part of this namespace unless a different namespace is declared within one of the child elements.

<element xmlns=”uri”> ….. </element>

<self_info xmlns="http://fog.ccsf.edu/~hyip/cnit131a/personal"

xmlns:res="http://fog.ccsf.edu/~hyip/cnit131a/resume">

<title>Mr.</per:title>

<name>Name 1</per:name>

</self_info>

1. Advantage: Default namespaces make the code easier to read because you do not have to add the namespace prefix to each element.
2. Disadvantage: It is not clear which element is coming from which XML file as compound document is combining several XML files.
Working with Attributes

An attribute can be qualified by adding a namespace prefix.
<element prefix:attribute=”value”> …. </element>

Where prefix is the namespace prefix and attribute is the attribute name.

<mod:model xmlns:mod=”http://www.abc.com/models” mod:id=”pr205”>

….

</mod:model>

NOTE: unlike element names, there is no default namespace for attribute names. Default namespaces apply to elements, but not to attributes. An attribute name without a prefix is assumed to belong to the same namespace as the element that contains it.

Since an attribute is automatically associated with the namespace of its element, why would you ever need to qualify an attribute name? in most cases you don’t. The only exception occurs when an attribute from one namespace needs to be used in an element from another namespace.
For example, HTML uses the class attribute to associate element belonging to a common group or class. You could attach the class attribute from the HTML namespace to elements from other namespaces. Since the class attribute is often used in Cascading Style Sheets to apply common formats to groups of elements, using the class attribute in other XML elements would allow this feature of CSS to be applied to those elements as well.

Adding a Namespace to a Style Sheet

NOTE: [XML works with external CSS only. (Embedded and inline CSS are not ok)

Formatting XML with CSS is not recommended. Use JavaScript or XSLT instead.]

Declaring a Namespace
To declare a namespace in a style sheet, you add the following rule to the style sheet file:

@namespace prefix url(uri);

Where prefix is the namespace prefix and uri is the URI of the namespace.

Note: both the prefix and URI must match the prefix and URI used in the XML document.

@namespace per url(http://fog.ccsf.edu/~hyip/cnit131a/personal);
NOTE: As with XML documents, the namespace prefix is optional. If the namespace prefix is omitted, then the URI in the @namespace rule is considered to be the default namespace for the selectors in the style sheet.

NOTE: Any @namespace rules in the style sheet must come after all @import and @charset rules and before any style declarations. If a namespace prefix is declared more than once, only the last instance is used in the style sheet.

Applying a Namespace to a Selector

Once you have declared a namespace in a style sheet, you can associate selectors with that namespace by adding the namespace prefix to each selector name using the syntax:

prefix|selector { attribute1:value1; attribute2:value2; …}
per|title {width: 160px}

The above example will apply the width style to all title elements that belong to the personal namespace. You can also use the wildcard symbol (*) to apply a style to any element within a namespace or to elements across different namespaces.

per|* {font-size: 12 pt}

The above example applies the font-size to any element within the personal namespace.

*|title {width: 150px}

The above example sets a width of 150 pixels to any element named title from any namespace. If you omit the namespace prefix from a selector, its style is also applied to all namespaces. Thus,
title {width: 150px}

The above example would apply to all elements named title in any namespace.

Let’s look at the sample of how the @namespace rules apply to the style sheet:

[Review: 01_personal.css and 01_resume.css]

01_personal.css
@namespace per url(http://fog.ccsf.edu/~hyip/cnit131a/personal);

per|title
{display:block; width:400px; color:blue; text-align: center;

font-size: 18px; border: 2px solid blue;

background-color: ivory;

margin: 10px; padding: 15px}

01_resume.css
@namespace res url(http://fog.ccsf.edu/~hyip/cnit131a/resume);

res|title

{display:block; font-size:12px; color: red;

margin-left: 20px; font-weight:bold}

Defining Namespaces with the Escape Character for Internet Explorer
Not all browsers support the use of the @namespace rule. (When the specifications for XML 1.0 were first posted, there was no support for namespaces).

A proposal which was not adopted but which was implemented in the Internet Explorer browser was to insert the backslash escape character (\) before the namespace prefix in CSS style sheets.

prefix\:selector {attribute1:value1; attribute2:value2; …}

per\:title {width: 150px}
The above example is for the declaration for the title element in the personal namespace.

You can apply the same style to several elements in the namespace by using the * symbol.

per\:* {width: 150px}

NOTE: Browsers like Firefox, Opera, and Netscape do not support this method with XML documents; thus, if you want to support the widest range of browsers, you have to duplicate the styles in the style sheet using both methods.

[Review: 02_self_information.xml, 02_personal.css, and 02_resume.css]

02_personal.css
@namespace per url(http://fog.ccsf.edu/~hyip/cnit131a/personal);

per|title
{display:block; width:400px; color:blue; text-align: center;

font-size: 18px; border: 2px solid blue;

background-color: ivory;

margin: 10px; padding: 15px}

per\:title
{display:block; width:400px; color:blue; text-align: center;

font-size: 18px; border: 2px solid blue;

background-color: ivory;

margin: 10px; padding: 15px}

02_resume.css
@namespace res url(http://fog.ccsf.edu/~hyip/cnit131a/resume);

res|title

{display:block; font-size:12px; color: red;

margin-left: 20px; font-weight:bold}

res\:title
{display:block; font-size:12px; color: red;

margin-left: 20px; font-weight:bold}

Combining XML and HTML documents
1. Convert HTML file to XML document.
2. Add xmlns definition to the heading section.

3. Link the css file in the heading section.

4. Insert XML data to the body section.

5. Add xml prefix to the XML data.

[Review: 03_self_information.html with 02_personal.css and 02_resume.css]

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

