Creating a DTD
There are two principal systems for writing schemas: DTD and XML Schema.
A DTD, or Document Type Definition, is an older, but widely used system with a peculiar and limited syntax.

The other primary system, XML Schema, is written in XML itself, and more powerful than a DTD.

Working with DTDs

A DTD (Document Type Definition) is a set of rules that defines a custom markup language in XML. A DTD simply identifies elements and their attributes. If an XML document does not adhere to the rules defined by the DTD, it is not considered valid for that particular custom language.

A DTD is a text-only document and is customarily saved with a .dtd extension. It is not an XML document itself and therefore, does not begin with the standard XML declaration.

A DTD defines rules for every element and attribute that can appear in an XML document. However, you must declare the DTD in your XML document in order to use it. Once this declaration is made, you can use various tools to validate the XML document against the DTD. This is the reason for creating a DTD in the first place, to insure that a given XML document is constructed in a specific way as defined by the DTD.

DTDs can be written and saved as separate files, or they can be written entirely inside an XML document. A benefit of writing internal DTDs is that there is only one file to manage that contains both the DTD structure and the XML content. A benefit of writing external DTDs is that they can easily be used to validate many XML documents. In fact, they can be used by other people and companies who are generating XML documents to validate their documents before sending them to you, and vice versa. In this way, the validation process enables the sharing of XML documents, as well as the verification that these documents are all consistently structured.
Creating an External DTD

Define the rules for the DTD in an external file, then save the file as text only using an extension of .dtd.

Declaring an External DTD

Now that you have created an external DTD, you need to refer to it within your XML document. You do this using a document type declaration which declares the DTD.

<?xml version"1.0" standalone="no"?>

<!DOCTYPE root SYSTEM "external_file.dtd">

NOTE: In the XML declaration at the top of the document, add standalone="no". This tells the XML parser that the document will rely on an external file; in this case, the one that contains the DTD.
XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!--

2015-10-23

sample external DTD

-->

<!DOCTYPE customer SYSTEM "external_dtd_sample.dtd">

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

</customer>
External DTD:

<!ELEMENT customer (name, phone, email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

Declaring and Creating an Internal DTD

For individual XML documents (one that you won’t be sharing), it is simplest to declare and create the DTD within the XML document itself.

NOTE: the rules for creating a DTD, whether internal or external, are the same. The difference between the two is the way the document type declaration is written; in other words, how the DTD is declared.

For Internal DTD, it is at the top of your XML document, after the XML declaration:

<?xml version="1.0"? encoding="UTF-8" standalone="yes"?>

<!DOCTYPE root
[

Create your DTD by defining its elements and attributes.
]>

XML with Internal DTD:

<?xml version="1.0"? encoding="UTF-8" standalone="yes"?>

<!--

2015-10-23

sample internal DTD

-->

<!DOCTYPE customer

[

<!ELEMENT customer (name, phone, email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

]>

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

</customer>
Combined External and Internal DTDs (added additional element – address):

<?xml version="1.0"?>

<!--

2015-10-23

sample combined external/internal DTDs

-->

<!DOCTYPE customer SYSTEM "external_dtd_sample.dtd"

[

<!ELEMENT address (#PCDATA)>

]>

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

<address>123 Street, San Francisco, CA 94123</address>

</customer>
Naming a Public External DTD:

If your DTD will be used by others, you should name your DTDs in a standard way; using a formal public identifier, or FPI. An XML parser could then use the FPI to find the latest version of the DTD on a public Web server.

To name an external DTD:

1. Type
-//, if your DTD is not a recognized standard (this is most common), or

+//, if your DTD is an approved non-ISO standard, or

ISO//, if your DTD is an approved ISO standard.
2. Then, type owner//, where owner identifies the person or organization who wrote and will maintain the DTD.
3. Next, type DTD description//, where description is a reference to the DTD and should contain a unique element, such as a version number.
4. Finally, type XX, where XX is the two-letter abbreviation for the language the DTD uses.
-//myowner//DTD myowner description 2.0//EN

To declare a PUBLIC external DTD in my xml file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE customer PUBLIC "-//myowner//DTD customer 2.0//EN" "http://www.myowner.com/dtd/external_dtd_sample.dtd">

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

</customer>

DTD declaration:

To define an element that only contains text:

<!ELEMENT tag_name (#PCDATA)>

To define an empty element:

<!ELEMENT tag_name EMPTY>

To define an element to contain one child element:

<!ELEMENT tag_name (child_name)>

To define an element with children:

<!ELEMENT tag_name (child1, child2, child3)>

To define the number of occurrences:
*
Means zero or more times

+
Means one or more times

?
Means zero or one time only.

<!ELEMENT tag_name (child_name*, child_name+, child_name?)>

To define choices for the content of an element:

<!ELEMENT root (child1+)>
<!ELEMENT child1 (#PCDATA | tag_1 | tag_2 | tag_3)*>

<!ELEMENT tag_1 (#PCDATA)>

<!ELEMENT tag_2 (#PCDATA)>

<!ELEMENT tag_3 (#PCDATA)>

XML:

<root>

<child1>Data for child1</child1>

<child1>

<tag_1>Tag 1 data</tag_1>

<tag_2>Tag 2 data</tag_2>

</child1>

<child1>

Data for child1

<tag_2>Tag 2 data</tag_2>

<tag_3>Tag 3 data</tag_3>

</child1>

</root>

To define an element that can contain anything:

It can contain any combination of elements and text. As with mixed content, this is useful if you are creating a DTD to support XML documents from different sources. It may be the only way to define elements you know and allow for element structures you cannot anticipate.

<!ELEMENT root (tag_name+)>

<!ELEMENT tag_name ANY>

XML:

<root>

<tag_name>Data for tag name</tag_name>

<tag_name>

<tag_1>Tag 1 data</tag_1>

<tag_2>Tag 2 data</tag_2>

</tag_name>

</root>

NOTE: Element content of ANY means to allow the element to contain any combination of elements and parsed character data.

References:
New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

