About Attributes

Attributes are useful to provide additional data about an element. Information contained in attributes tends to be about the content of the XML document, as opposed to being the content itself.
Attributes are, of course, often used with empty elements where they describe information about the element. For example, they are often used to store IDs, as attributes are not the data, but information about the data.

Defining Attributes

An attribute may not appear in a valid XML document unless it has been declared in the DTD. An attribute definition consists of four parts: element name, attribute name, attribute type, and an optional status.

To define an attribute:

<!ATTLIST tag_name attr_name CDATA #IMPLIED>

or

<!ATTLIST tag_name attr_name CDATA #REQUIRED>

NOTE: CDATA indicates that the attribute type as text. And, unlike (#PCDATA), CDATA, or character data, will not be parsed by the processor.

NOTE: for the attribute’s optional status - #IMPLIED or #REQUIRED, #IMPLIED indicates that the attribute may be omitted. #REQUIRED indicates that the attribute must contain a value.

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

units CDATA #IMPLIED>

XML:

<height>39<//height>

Or

<height units="feet">39</height>

Or

<height units="39">feet</height>

NOTE: According to the DTD, all three of these XML are valid.

DTD:

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

units CDATA #REQUIRED>

XML:

<height>39</height>

Or

<height units="feet">39</height>

Or

<height units="39">feet</height>

NOTE: According to the DTD, only the last two XMLs are valid. The first XML is not valid because the height element does not contain a units attribute.

Defining Attribute’s Default Values
Instead of having an attribute’s optional status be either #REQUIRED or #IMPLIED, you can set an attribute to have default values.

To define an attribute with default values:

<!ATTLIST element_name attr_name CDATA "default_data">

Or

<!ATTLIST element_name attr_name CDATA #FIXED "default_data">

NOTE: "default_data" (the opening and closing quotes are required), where default_data will be the value for the attribute if none is set in the XML document.

#FIXED "default_data", where default_data will be the value for the attribute if none is explicitly set. And, if set, the attribute must be set to this value for the XML document to be valid.

DTD:
<!ELEMENT height (#PCDATA)>

<!ATTLIST height

units CDATA "feet">

XML:

<height units="feet">39</height>

Or

<height units="meters">39</height>

Or

<height>39</height>

NOTE: According to the DTD, all the above XML are valid. The units attribute can be set to any value and may even be omitted. If the units attribute is omitted, the parser will act as if the attribute is actually present and that its value is feet.

DTD:

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

units CDATA #FIXED "feet">

XML:

<height units="feet">39</height>

Or

<height units="meters">39</height>

Or

<height>39</height>

NOTE: According to the DTD, the middle XML is no longer valid. If the attribute is set, it must contain a value of feet (and not meters, or any other characters). In the last XML, the parser acts as if the units attribute is actually set to feet.
Defining Attributes with Choices
DTDs support attribute types that allow much more than just character data. One such type allows you to define an attribute that supports different pre-defined choices.

To define an attribute with choices:

<!ATTLIST element_name attr_name (choice1 | choice2 | choice 3) optional_staus>

NOTE: optional_status = #IMPLIED or #REQUIRED or "default_data" or #FIXED "default_data"
DTD:

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

units (inches | feet) #REQUIRED>

XML:

<height units="feet">39</height>

Or

<height units="meters">39</height>

Or

<height>39</height>

NOTE: According to the DTD, only the first XML is valid. Second XML is invalid because meters is not one of the allowed choices for the content of the attribute. The last XML is invalid because the units attribute is missing.

Defining Attributes with Unique Values

There are a few special kinds of attribute types. ID attributes are defined to have a value that is unique (not repeatable) throughout the XML document. An ID attribute is ideal for keys and other identifying information (product codes, customer codes, etc)

To define ID attributes:

<!ATTLIST element_name attr_name ID #REQUIRED>

Or

<!ATTLIST element_name attr_name ID #IMPLIED>

NOTE: ID attributes can only by #REQUIRED or #IMPLIED, they cannot use the default values.

DTD:

<!ELEMENT element_name (name)>

<!ATTLIST element_name

uid ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

XML1:

<element_name uid="a_123">

<name>Name data</name>

</element_name>

<element_name uid="a_234”>

<name>Name data2</name>

</element_name>

XML2:
<element_name uid="a_123">

<name>Name data</name>

</element_name>

<element_name uid="a_123”>

<name>Name data2</name>

</element_name>

NOTE: According to DTD, the uid attribute must contain a unique value throughout the XML document. Given this, XML1 is valid, but XML2 is not valid.
Referencing Attributes with Unique Values

An attribute whose value is the same as any existing ID attribute in the XML document is called an IDREF attribute.
NOTE: IDREF defines attribute that can contain a value matching any existing ID attribute’s value.

e.g. In XML:

attr_name="existing_id1"
attr_name="existing_id2"
…

An attribute whose value is a white-space separated list of existing ID attribute values is called an IDREFS attribute (Notice that this attribute ends in an “s”).

NOTE: IDREFS (with an "s") defines attribute that can contain several white-space-separated values which match any existing ID attribute’s value.

e.g. In XML:

attr_name="existing_id_1 existing_id_2 existing_id_3"
To define reference attributes with unique values:

For IDREF:

<!ATTLIST element_name

attr_name IDREF #REQUIRED>

OR

<!ATTLIST element_name

attr_name IDREF #IMPLIED>

For IDREFS:

<!ATTLIST element_name

attr_name IDREFS #REQUIRED>

OR

<!ATTLIST element_name

attr_name IDREFS #IMPLIED>

DTD Reference Attributes IDREF:

<!ELEMENT cust_data (customer, ord*)+>

<!ELEMENT customer (name)>

<!ATTLIST customer

cust_id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT ord (ord_date)>

<!ATTLIST ord

ord_by IDREF #REQUIRED>

<!ELEMENT ord_date (#PCDATA)>
XML:

<cust_data>

<customer cust_id="a_123">

<name>Name 1</name>

</customer>

<ord ord_by="a_123">

<ord_date>2015-10-10</ord_date>

</ord>

<ord ord_by="a_123">

<ord_date>2015-10-22</ord_date>

</ord>

<customer cust_id="a_234">

<name>Name 2</name>

</customer>

<ord ord_by="a_234">

<ord_date>2015-10-10</ord_date>

</ord>

</cust_data>
DTD Reference Attributes IDREFS:
<!ELEMENT cust_data (customer, ord*)+>

<!ELEMENT customer (name)>

<!ATTLIST customer

cust_id ID #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT ord (ord_date)>

<!ATTLIST ord

ord_by IDREFS #REQUIRED>

<!ELEMENT ord_date (#PCDATA)>

XML:

<cust_data>

<customer cust_id="a_123">

<name>Name 1</name>

</customer>

<customer cust_id="a_234">

<name>Name 2</name>

</customer>

<ord ord_by="a_123 a_234">

<ord_date>2015-10-10</ord_date>

</ord>

<ord ord_by="a_123">

<ord_date>2015-10-22</ord_date>

</ord>

</cust_data>
Restricting Attributes to Valid XML Names

DTDs do not allow for much data typing, but there is one restriction that you can apply to attributes. The value that begins with a letter or an underscore and contains only letters, numbers, underscores, hyphens and periods.
NOTE: Attribute type NMTOKEN: if you want the attribute value to be a valid XML name as defined below.

NOTE: Attribute type NMTOKENS: if you want the attribute value to be a white-space-separated list of valid XML names.

Valid XML name (element and attribute):

1. Element and attribute names must begin with a letter, an underscore, or a colon. (Names that begin with xml (in any combination of upper- and lowercase), are reserved and cannot be used).

2. Element and attribute names may contain any number of letters, digits, underscores, and a few other punctuation characters (colon, hyphen, and period).

NOTE: Avoid using colon, hyphen and period.
To define attribute values follow the rules for valid XML names:

For NMTOKEN:

<!ATTLIST element_name

attr_name NMTOKEN #IMPLIED>
OR

<!ATTLIST element_name

attr_name NMTOKEN #REQUIRED>
For NMTOKENS:

<!ATTLIST element_name

attr_name NMTOKENS #IMPLIED>
OR

<!ATTLIST element_name

attr_name NMTOKENS #REQUIRED>
DTD:
<!ELEMENT state (#PCDATA)>
<!ATTLIST state

capital NMTOKEN #REQUIRED>

XML:
<usa>

<state capital="sacramento">California</state>

<state capital="carson city">Nevada</state>

</usa>
NOTE: According to DTD, the second attribute has a space in its value (spaces are not allowed in an NMTOKEN attribute). The first attribute is valid.

In order to use space (or any white-space), you should use attribute type NMTOKENS (with an "S").

Entities And Notations in DTDs
Entities are just like autotext entries or shortcuts. With an entity, you define its name and the text it should expand into when referenced in your document. Then, when you type the entity reference in an XML document or DTD, it is replaced with text you defined.

There are several types of entities, but they all work in the same way, and they are all defined through a DTD. The differences lie in where the entity can be expanded, and what kind of data it contains.

Entities can be divided into two main types:

1. General entities: can be expanded only in XML documents.
General entities further subdivided into internal and external, parsed or unparsed.
2. Parameter entities: can be expanded only in DTD.
Parameter entities further subdivided into internal and external, and always parsed.

Creating a General Entity

The simplest kind of entities is defined in a DTD, and they simply represent text. Officially, they are called internal general entities (or also called shortcuts).

To create an internal general entity:

In the DTD,

<!ENTITY ent_name "content">

NOTE: In XML, there are five built-in general entities: & < > " '

All other entities must be declared in the DTD before being used.

Using General Entities

Once you have defined an entity in your DTD, you can use it in any XML document that references that DTD.

To use general entities:

1. In XML document, type & (an ampersand).
2. Then, type ent_name, where ent_name identifies the name of your entity.

3. Finally, type ; (a semicolon).

In XML,

<element_name>Data data more data. Start general entity &ent_name; End of entity.

</element_name>
Sample internal general entity:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE customer

[

<!ELEMENT customer (name, phone, email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ENTITY weekend "Friday Saturday Sunday">

]>

<customer>

<name>"John's Smith" & &weekend;</name>

<phone><415> 123-4567</phone>

<email>jsmith@abc.com</email>

</customer>
Creating an External General Entity

If you have a large entity, or one that could be reused in multiple DTD documents, it is often more convenient to save it in a separate, external document.

To create an external general entity:

Create the content for the entity in an external file. Save the file as text-only using an extension of .ent.

ext_gen_ent_file.ent

To define an external general entity:

In DTD,

<!ENTITY ent_name SYSTEM "entity_uri">

NOTE: Where ent_name specifies the name of the external entity; the name you will refer to when using the entity in your XML document.

NOTE: Where entity_uri is the location of the file containing the entity content.

Using External General Entities

Once created, you can use your entity, share your entity with others, and borrow entities from others (provided they have created external general entities too).

To use external general entities:

In the XML document that will refer to the DTD, add standalone="no" to the initial XML declaration. This tells the XML parser that the document will rely on an external file; in this case, the one that contains the entity definition.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
Then, in the XML document, you should type & (an ampersand). Then, you should type ent_name, where ent_name identifies the name of your entity. Finally, you should type ; (a semicolon).

<element_name>Data data more data. Start general entity &ent_name; End of entity.

</element_name>
External Entity File (addtl.ent):

<addendum>

Data, more data.

more more data, &weekend;, More more more data

</addendum>

XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE customer

[

<!ELEMENT customer (name, phone, email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ENTITY weekend "Friday Saturday Sunday">

<!ENTITY additional SYSTEM "addtl.ent">

]>

<customer>

<name>John Smith

&additional;

</name>

<phone><415> 123-4567</phone>

<email>jsmith@abc.com</email>

</customer>
External Unparsed Entities and Notations (FYI only)

NOTE: Unparsed entities are a complicated confusing mistake that should never have been included in XML. The only thing an unparsed entity really adds is the notation. But that is too nonstandard to be of much use.

Here is the example for your reference:

XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE customer

[

<!ELEMENT customer (name, phone, email, photo)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!NOTATION jpg SYSTEM "image/jpeg">

<!ENTITY cust_pic SYSTEM "logo_01.jpg" NDATA jpg>

<!ELEMENT photo EMPTY>

<!ATTLIST photo

source ENTITY #REQUIRED>

]>

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

<photo source="cust_pic" />

</customer>
NOTE: Unparsed file: contains the data that you want to embed in the XML document. It may be, or contain, virtually anything; including plain text, an image file, a video file, a PDF file or anything else.

Creating and Using Internal Parameter Entities

In a DTD, you can create entities for the DTD itself. These kinds of shortcuts are called parameter entities (Internal and External Parameter Entities).

NOTE: Internal parameter entity references may not be used within markup in an internal DTD. (i.e. External DTD for a XML file must be used. DTD definition and XML should not be co-existed in the file).

NOTE: Parameter entities must be created in the DTD before they are used in the DTD. (i.e. the order does matter).

NOTE: Parameter entities can only be used within the DTD, and are distinguished from general entities by the percent sign (%).

To create an internal parameter entity:

1. In the external DTD, type <!ENTITY to begin the entity definition.

2. Then, type % followed by a space to note that the entity is a parameter entity.

3. Next, type ent_name, where ent_name specifies the name of the entity; the name you will refer to when using the entity in your DTD.

4. Then, type "content", where content is the shortcut text that will appear when you use the entity in your DTD.

NOTE: content can be any character that is not an &, % or ".
5. Finally, type > to complete the entity definition.

<!ENTITY % p "(#PCDATA)">

To use an Internal Parameter entity:

1. In the external DTD, type % (with no following space).

2. Then, type ent_name, where ent_name is the identifying name of your entity.

3. Finally, type ; (a semicolon).

<!ELEMENT phone %p;>

Sample Internal Parameter Entities (internal_parameter_entity.dtd, internal_parameter_entity.xml):
External DTD in which consists of Internal Parameter Entities:

<!ENTITY % p "(#PCDATA)">

<!ELEMENT customer (name, phone, email, photo)>

<!ELEMENT name %p;>

<!ELEMENT phone %p;>

<!ELEMENT email %p;>

<!ELEMENT photo EMPTY>

<!ATTLIST photo

source CDATA #REQUIRED

width CDATA #REQUIRED

height CDATA #REQUIRED>

XML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE customer SYSTEM "internal_parameter_entity.dtd">

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

<photo source="cust_pic.jpg" width="200" height="300" />

</customer>

Creating an External Parameter Entity

Parameter entities can also be created in external file.

To create an external parameter entity:

Create the entity’s content in an external file and save it as text only using an .ent extension.

To define an external parameter entity:
1. In the external DTD, type <!ENTITY to begin the entity definition.
2. Then, type % to indicate that this is for a parameter entity.
3. Next, type ent_name, where ent_name specifies the name of the external entity; the name you will refer to when using the entity in your XML document.
4. Then, type SYSTEM to indicate that the entity is defined externally in another document.
5. Next, type "entity.uri", where entity.uri is the location of the file with the entity content.
6. Finally, type > to complete the entity definition.
<!ENTITY % default_pic SYSTEM "pic.ent">

NOTE: To use this external parameter entity in the same way you would an internal parameter entity.

Sample External Parameter Entity (pic.ent, external_parameter_entity.dtd, external_parameter_entity.xml)
External Parameter file (with .ent extension):

<!ELEMENT photo EMPTY>

<!ATTLIST photo

source CDATA #REQUIRED

width CDATA #REQUIRED

height CDATA #REQUIRED>

External DTD file:

<!ENTITY % default_pic SYSTEM "pic.ent">

<!ELEMENT customer (name, phone, email, photo)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

%default_pic;
XML file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE customer SYSTEM "external_parameter_entity.dtd">

<customer>

<name>John Smith</name>

<phone>(415) 123-4567</phone>

<email>jsmith@abc.com</email>

<photo source="cust_pic.jpg" width="200" height="300" />

</customer>

Pros and Cons of DTDs
DTD are schemas. They specify the elements, attributes, and relationships that a valid XML document can contain.

DTD are very powerful and very useful; however, there are other schema languages for XML. The most recognized and most used alternative is called XML Schema, and each schema language has its costs and benefits.

Some pros of using DTDs:

1. They are compact and easily comprehended with a little direction.
2. They can be defined inline (internal DTDs) for quick development.
3. They can define entities.
4. They are likely the most widely accepted and are supported by most XML parsers.
Some cons of using DTDs:

1. They are not written using XML syntax, and require parsers to support an additional language.
2. They do not support Namespaces.
3. They do not have data typing (requiring data to be an integer, a string, or a date, etc…), thereby decreasing the strength of the validation.
4. They have limited capacity to define how many child elements can nest within a given parent element.
References:
New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

