Declaring Attributes

To enforce the attribution properties on the document, you must add an attribute-list declaration to the document’s DTD.
The attribute-list declaration accomplishes the following:

· Lists the names of all of the attributes associated with a specific element

· Specifies the data type of each attribute

· Indicates whether each attribute is required or optional

· Provides a default value for each attribute, it necessary

<!ATTLIST element attribute1 type1 default1

attribute2 type2 default2

attribute3 type3 default3 …>

Where element is the name of the element associated with the attributes, attribute1 is the name of an attribute, type1 is the attribute’s data type, and default1 indicates whether the attribute is required and whether it has a default value.

In practice, declarations for elements with multiple attributes are often easier to interpret if the attributes are declared separately rather than in one long declaration.
<!ATTLIST element attribute1 type1 default1>

<!ATTLIST element attribute2 type2 default2>

<!ATTLIST element attribute3 type3 default3>

…

NOTE: XML parsers combine the different statements into a single attribute declaration. If a processor encounters more than one declaration for the same attribute, it ignores the second statement. Attribute-list declarations can be located anywhere within the document type declaration, although it is often easiest to work with attribute declarations that are located adjacent to the declaration for the element with which they are associated.

Working with Attribute Types
Attribute values can consist only of character data, but you can control the format of those characters. Attribute values can be placed into several different categories. Each category gives you a varying degree of control over the attribute’s content.

	Attribute Value
	Description

	CDATA
	Character data

	Enumerated list
	A list of possible attribute values

	ID
	A unique text string

	IDREF
	A reference to an ID value

	IDREFS
	A list of ID values separated by white space

	ENTITY
	A reference to an external unparsed entity

	ENTITIES
	A list of entities separated by white space

	NMTOKEN
	An accepted XML name

	NMTOKENS
	A list of XML names separated by white space

CDATA
Character data, or CDATA, is the simplest form for attribute text. Specifying character data allows an attribute to contain almost any data except those characters reserved by XML (such as the <, >, and & character).

<!ATTLIST element attribute CDATA default>

<!ATTLIST item itemPrice CDATA>

<!ATTLIST item itemQty CDATA>

Any of the following attribute values are allowed under this declaration:

<item itemPrice=”29.95”>….</item>

<item itemPrice=”$29.95”>…</item>

NOTE: the $ symbol in this example is treated as character data.
NOTE: It may seem strange that values of the itemQty attribute are expressed in character data. It makes more sense to declare that itemQty values must be integers or numbers, but no such data type exists for DTDs. (To indicate that an attribute value must be an integer or number, you must use schemas which will discuss later).

Enumerated Types

The CDATA data type allows for almost any string of characters, but in some cases you will want to restrict the attribute to a set of possible values.
Attributes that are limited to a set of possible values are known as enumerated types.

<!ATTLIST element attribute (value1 | value2 | value3 | …) default>

Where value1, value2, value3, etc… are allowed values for the specified attribute.

<!ATTLIST customer custType (home | business)>

Under this declaration, any custType attribute whose value is not “home” or “business” causes parsers to reject the document as invalid.

Notation
Another type of enumerated attribute is a notation. A notation associates the value of an attribute with a <!NOTATION> declaration that is inserted elsewhere in the DTD. Notations are used when an attribute value refers to a file containing nontextual data, like a graphic image or a video clip.

<!NOTATION name system “external_id”>

<!NOTATION GIF system "image/gif">

Reference: http://webdesign.about.com/od/dtds/a/aa101700b.htm
Tokenized Types

Tokenized types are character strings that follow certain rules (known as tokens) for format and content. DTD support four kinds of tokens: IDs, ID references, name token, and entities.

An ID token is used when an attribute value must be unique within a document.

<!ATTLIST customer custID ID>

Under the declaration, the following elements are valid:

<customer custID=”Cust021”>…</customer>

<customer custID=”Cust022”>…</customer>
Once an ID value has been declared in a document, other attribute value can reference to it using the IDREF token. An attribute declared as an IDREF token must have a value equal to the value of an ID attribute located somewhere in the same document. This enables an XML document to contain cross-references between one element and another.

<!ATTLIST element attribute IDREF default>
<!ATTLIST order orderBy IDREF>

When an XML parser encounters this attribute, it searches the XML document for an ID value that matches the value of the orderBy attribute. If it does not find one, it rejects the document as invalid.

Attributes can contain multiple IDs and IDREFs, placed in lists, with each entry separated by white space. To declare a list of IDs or IDREFs, you submit the following

<!ATTLIST element attribute IDS default>

Or

<!ATTLIST element attribute IDREFS default>

For example, the following sample code:

<customer orders=”OR3431 OR3910 OR5310”> … </customer>

…
<order orderID=”OR3431”>… </order>

<order orderID=”OR3910”>…</order>

<order orderID=”OR5310”>…</order>

The attribute types of the Orders and OrderID attributes are defined as follows:

<!ATTLIST customer orders IDREFS>

<!ATTLIST order orderID ID>

The NMTOKEN (or name token) data type is used with character data whose value must be valid XML names. This means that NMTOKEN data types can contain letters, numbers, and the punctuation symbols underscore (_), hyphen (-), period (.), and colon (:).

The attribute type of NMTOKEN restricts the attribute's value to one that is a valid XML name. That means the value must only contain digits, letters, and underscores, and they must begin with a letter or underscore. Note that they can't contain spaces.

<!ATTLIST mountain country NMTOKEN #REQUIRED>

Valid XML - The following XML document would be valid, as it conforms to the above DTD:

<mountains>

 <mountain country="NZ">
 <name>Mount Cook</name>

 </mountain>

 <mountain country="AU">
 <name>Cradle Mountain</name>

 </mountain>

</mountains>

Invalid XML - The following XML document would be invalid because the value of the first attribute contains a space:

<mountains>

 <mountain country="New Zealand">
 <name>Mount Cook</name>

 </mountain>

 <mountain country="Australia">
 <name>Cradle Mountain</name>

 </mountain>

</mountains>

NOTE: A name token cannot contain white space. This constraint makes name token less flexible than character data, which can contain white space characters.

Working with Attribute Defaults

There are four possible values: #REQUIRED, #IMPLIED, a default value, and a fixed default value.

	Attribute Default
	Description

	#REQUIRED
	The attribute must appear with every occurrence of the element.

	#IMPLIED
	The attribute is optional.

	“default”
	The attribute is optional. If an attribute value is not specified, a validating XML parser will supply the default value.

	#FIXED default
	The attribute is optional. If an attribute value is specified, it must match the default value.

<!ATTLIST customer custID ID #REQUIRED>
NOTE: a customer ID is required for every customer.

<!ATTLIST customer custType (home | business) #IMPLIED>

If an XML parser encounters a customer element without a custType attribute, it doesn’t invalidate the document, but instead assumes a blank value for the attribute.

<!ATTLIST item itemQty CDATA “1”>

The itemQty attribute is optional, but unlike the custType attribute, which gets a blank value if omitted. The XML parser will assume a value of “1” for this attribute if it is missing.

<!ATTLIST sender company CDATA #FIXED “MyCompnay”>
If you omit the attribute from the element, an XML parser supplies the default value; if you include the attribute, the attribute value must be equal to default or the document is invalid.

Validating XML document
http://validator.w3.org/
Introducing Entities
From the orders.xlm example above, we would like to replace the product codes with the longer product descriptions.
Five built-in entity references in XML:
· & for the & character

· < for the < character

· > for the > character

· ' for the ‘ character

· " for the " character

When an XML parser encounters these entity references, it parses the code and displays the corresponding character symbol. These standard character and entity references are built into the language of XML.

Using DTDs, you can create your own customized set of entities corresponding to text string such as product descriptions, files, or non-textual content that you want inserted into an XML document.

Working with General Entities
To create your own customized entity, you add a general entity to a document’s DTD.

A general entity is an entity that references content to be used within an XML document. That content can be either parsed or unparsed.

A parsed entity references text that can be readily interpreted or parsed by an application reading the XML document. Parsed entities can reference characters, words, phrases, paragraphs, or entire documents. The only requirement is that the text be well formed.

An entity that references content that is either nontextual or which cannot be interpreted by an XML parser is an unparsed entity. An entity that references a graphic image would be an unparsed entity.

The content can be placed either within the DTD or in an external file. Internal entities include their content in the DTD.

External entities draw their content from external files.
Parsed Entities

To create an internal parsed entity, you add the following declaration to the DTD:

<!ENTITY entity “value”>

Where entity is the name you have assigned to the entity and value is the entity ‘s value.

NOTE: the entity name follows the same rules that apply to all XML names: there can be no blank spaces in the name, and the name must begin with either a letter or an underscore. The entity value itself must be well-formed XML text. This can be a simple text string, or it can be well-formed XML code. For example, to store the product description for the Tapan digital camera:

<!ENTITY DCT5Z “Tapan Digital Camera 5 Mpx – Zoom”>

If you want to include markup tags around this product description:
<!ENTITY DCT5Z “<desc>Tapan Digital Camera 5 Mpx – Zoom</desc>”>

For longer text strings, it is preferable to place the content in an external file. To create an external parsed entity, you use the declaration:

<!ENTITY entity SYSTEM “uri”>

Where entity is entity’s name and uri is the URI of the external file containing the entity’s content.

<!ENTITY DCT5Z SYSTEM “description.xml”>

NOTE: the description.xml file must contain well-formed XML content. However, it should not contain an XML declaration. Since XML documents can contain only one xml declaration, placing a second one in a document via an external entity results in an error.

An external entity can also reference a public location using the declaration.

<!ENTITY entity PUBLIC “id” “uri”>

Where id is the public identifier and uri is the system location of the external file.
<!ENTITY DCT5Z PUBLIC “-//PIXAL/DCT5Z INFO” “description.xml”>

Referencing a General Entity
Once a general entity has been declared in a DTD, it can be referenced anywhere within the body of the XML document. The syntax for referencing a general entity is

&entity;

Where entity is the entity’s name as declared in the DTD.

<!ENTITY DCT5Z “Tapan Digital Camera 5 Mpx – zoom”>

You can insert the entity’s value into the XML document with the reference
<item>&DCT5Z;</item>

When an XML parser encounters this general entity, it expands the entity’s value into the XML document, resulting in the following content:

<item>Tapan Digital Camera 5 Mpx – zoom</item>

NOTE: The fact that the entity’s value is expanded into the code of the XML document is one reason why entity values must correspond to well-formed XML code.
Note that because of the way entities are parsed, you cannot include the & symbol as part of an entity’s value. XML parser interpret the & symbol as a reference to another entity and attempt to resolve the reference. If you need to include the & symbol, you should use the built-in entity reference &. You also cannot use the % symbol in an entity’s value because, this is the symbol used for inserting parameter entities.

01_orders.xml
<!DOCTYPE customers

[

<!-- Product code descriptions inserted as general entities (internal reference – works in Netscape and Firefox, not Safari) -->

<!-- modify the data - change the product code to product code reference -->

<!ENTITY DCT5Z "Tapan Digital Camera 5 Mpx - zoom">

<!ENTITY SM128 "SmartMedia 128MB Card">

<!ENTITY RCL "Rechargeable Lithium Ion Battery">

<!ENTITY BCE4L "Battery Charger 4pt LIthium">

<!ENTITY WBC500 "WebNow Webcam 500">

<!ENTITY RCA "Rechargeable Alkaline Battery">

<!ENTITY SCL4C "Linton Flatbed Scanner 4C">

<!ELEMENT customers (customer+)>

<!ELEMENT customer (name, address, phone, email?, orders)>

<!ATTLIST customer custID ID #REQUIRED>

<!ATTLIST customer custType (home | business) #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name title (Mr. | Mrs. | MS.) #IMPLIED>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT orders (order+)>

<!ELEMENT order (orderDate, items)>

<!ATTLIST order orderID ID #REQUIRED>

<!ATTLIST order orderBy IDREF #REQUIRED>

<!ELEMENT orderDate (#PCDATA)>

<!ELEMENT items (item+)>

<!ELEMENT item (#PCDATA)>

<!ATTLIST item itemPrice CDATA #REQUIRED>

<!ATTLIST item itemQty CDATA "1">

]>

<customers>

<customer custID="cust201" custType="home">

<name title="Mr.">David Lynn</name>

<address>

<![CDATA[

211 Fox Street

Greenville, NH 80021

]]>

</address>

<phone>(315) 555-1812</phone>

<email>dlynn@abc.net</email>

<orders>

<order orderID="or10311" orderBy="cust201">

<orderDate>8/1/2008</orderDate>

<items>

<item itemPrice="599.95">&DCT5Z;</item>

<item itemPrice="199.95">&SM128;</item>

<item itemPrice="29.95" itemQty="2">&RCL;</item>

</items>

</order>

<order orderID="or11424" orderBy="cust201">

<orderDate>9/14/2008</orderDate>

<items>

<item itemPrice="59.95">&BCE4L;</item>

</items>

</order>

</orders>

</customer>

</customers>
NOTE: if you would like to use these product codes in the other XML documents, you would like to place the declaration in an external DTD file named codes.DTD

Working with Parameter Entities

With parameter entities, a DTD can be broken into smaller chunks, or modules, placed in different files. Rather than placing all of the declarations within a single file, individual programmers could work on sections suited to their expertise. Parameter entities also allow XML programmers to reuse large blocks of DTD code without retyping the same code multiple times.
<!ENTITY % entity “value”>

Where entity is the name of the parameter entity and value is the text of the entity’s value. Parameter entities can also reference external content in either system or public locations. The declarations for external parameter entities are:

<!ENTITY % entity SYSTEM “uri”>

Or

<!ENTITY % entity PUBLIC “id” “uri”>

Where id is the public identifier for the parameter entity and uri is the location of the external file containing DTD content.

The following code shows an internal parameter entity for a collection of elements and attributes:

<!ENTITY % books

“<!ELEMENT Book (Title, Author)>

<!ATTLIST Book Pages CDATA #REQUIRED>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author (#PCDATA)>”

>
If you place these elements and attributes in an external DTD file named “books.dtd”, you could declare the following external parameter entity to access the content of that document:

<!ENTITY % books SYSTEM “books.dtd”>

Once a parameter has been declared, you can add a reference to it within the DTD using the statement.

%entity;

Where entity is the name assigned to the parameter entity. Parameter entity references can be placed only where a declaration would normally occur, such as within an internal or external DTD. You cannot insert a parameter entity reference within the content of an XML document.

%books;

You can define multiple parameter entities:

<!ENTITY % books SYSTEM “books.dtd”>

<!ENTITY % mags SYSTEM “magazines.dtd”>

%books;

%mags;

02_orders.xml
<!DOCTYPE customers

[

<!ELEMENT customers (customer+)>

<!ELEMENT customer (name, address, phone, email?, orders)>

<!ATTLIST customer custID ID #REQUIRED>

<!ATTLIST customer custType (home | business) #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name title (Mr. | Mrs. | MS.) #IMPLIED>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT orders (order+)>

<!ELEMENT order (orderDate, items)>

<!ATTLIST order orderID ID #REQUIRED>

<!ATTLIST order orderBy IDREF #REQUIRED>

<!ELEMENT orderDate (#PCDATA)>

<!ELEMENT items (item+)>

<!ELEMENT item (#PCDATA)>

<!ATTLIST item itemPrice CDATA #REQUIRED>

<!ATTLIST item itemQty CDATA "1">

<!-- codes.dtd contains a list of product codes (external file - only works in IE) -->

<!-- modify the data - change the product code to product code reference -->

<!ENTITY % itemCodes SYSTEM "codes.dtd">

%itemCodes;

]>
NOTE: unfortunately, only Internet Explorer can resolve content placed in external entities and DTDs. The built-in XML parsers in browsers such as Netscape and Firefox do not allow for this.

NOTE: Current browsers do not universally support external entities and DTDs. Both Netscape and Firefox use a built-in XML parser called Expat, which does not support resolution of external entities. The reason is that if an entity declaration is placed in a file on a remote Web server, the XML parser has to establish a TCP/IP connection with the remote file, which might not always be possible. Thus, to ensure that an XML document can be properly read and rendered, Expat requires entities to be part of the internal DTD. To remove the error message within these browsers, you can copy the entity declarations from the external DTD file and paste them into the internal DTD.
You can put the internal and external entity declaration on the same XML file:
03_orders.xml

<!DOCTYPE customers

[

<!-- Product code descriptions inserted as general entities (internal reference - work for Netscape & Firefox, not Safari) -->

<!-- modify the data - change the product code to product code reference -->

<!ENTITY DCT5Z "Tapan Digital Camera 5 Mpx - zoom">

<!ENTITY SM128 "SmartMedia 128MB Card">

<!ENTITY RCL "Rechargeable Lithium Ion Battery">

<!ENTITY BCE4L "Battery Charger 4pt LIthium">

<!ENTITY WBC500 "WebNow Webcam 500">

<!ENTITY RCA "Rechargeable Alkaline Battery">

<!ENTITY SCL4C "Linton Flatbed Scanner 4C">

<!ELEMENT customers (customer+)>

<!ELEMENT customer (name, address, phone, email?, orders)>

<!ATTLIST customer custID ID #REQUIRED>

<!ATTLIST customer custType (home | business) #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name title (Mr. | Mrs. | MS.) #IMPLIED>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT orders (order+)>

<!ELEMENT order (orderDate, items)>

<!ATTLIST order orderID ID #REQUIRED>

<!ATTLIST order orderBy IDREF #REQUIRED>

<!ELEMENT orderDate (#PCDATA)>

<!ELEMENT items (item+)>

<!ELEMENT item (#PCDATA)>

<!ATTLIST item itemPrice CDATA #REQUIRED>

<!ATTLIST item itemQty CDATA "1">

<!-- codes.dtd contains a list of product codes (external file - only works in IE) -->

<!-- modify the data - change the product code to product code reference -->

<!ENTITY % itemCodes SYSTEM "codes.dtd">

%itemCodes;

]>
Inserting Comments

Comments in a DTD follow the same syntax as comments in XML.

<!—

Comment

-->

Working with Unparsed Data (FYI only)
For a DTD to be able to validate either binary data, such as images or video clips, or character data that is not well formed, you need to work with unparsed entities as well. Because an XML parser cannot work with this type of data directly, a DTD needs to include instructions for how to treat the unparsed entity.

The first step is to declare a notation which identities the data type of the unparsed data. A notation must supply a name for the data type and provide clues about how XML parsers should treat the data. Since notations refer to external content, you must specify an external location.

<!NOTATION notation SYSTEM “uri”>

Where notation is the notation’s name and uri is a system location that tells XML parsers how to work with the data. The other option is to specify a public location, using the declaration:

<!NOTATION notation PUBLIC “id” “uri”>

Where id is a public identifier recognized by XML parsers. The URI for the resource can be either a program that can work with the unparsed data, or the actual data type.
<!NOTATION jpeg SYSTEM “paint.exe”>
Since an XML parser doesn’t know how to handle graphic data, this notation associates the paint.exe program with the jpeg data type. If you don’t want to specify a particular program, you could instead indicate the data type by using the mimi-type value with the notation.

<!NOTATION jpeg SYSTEM “image/jpeg”>

In this case, an XML parser associates the jpeg notation with the image/jpeg data type as long as the operating system already knows how to handle jpeg files. Once a notation is declared, you can create an unparsed entity that references specific items that use that notation.

<!ENTITY entity SYSTEM “uri” NDATA notation>

Where uri is the URI of the unparsed data and notation is the name of the notation that defines the data type for the XML parser. You can also provide a public location for the unparsed data if an XML parser supports it.

<!ENTITY entity PUBLIC “id” “uri” NDATA notation>

For example, the following declaration creates an unparsed entity named DCT5ZIMG that references the graphic image file dct5z.jpg:

<!ENTITY DCT5ZIMG SYSTEM “dct5z.jpg” NDATA jpeg>
Entities can be associated with attribute values by using the ENTITY data type in the attribute declaration.

<!ATTLIST item image ENTITY #REQUIRED>

<item image=”DCT5ZIMG”>DCT5Z</item>
NOTE: it tells XML parsers what kind of data is represented by the DCT5ZIMG entity, and it provides information on how to interpret the data stored in the dct5z.jpg file, but it does not tell parsers anything beyond that. Remember that XML’s purpose is to create structured documents, but not necessarily to tell programs how to render the data in a document. If a validating XML parser reads this code, it probably wouldn’t try to read the graphic image file, but it might check that the file is there.
Current Web browsers do not support mechanisms for validating and rendering unparsed data declared in the DTDs of XML documents, we should not add this feature to the XML file yet.

Pros and Cons of DTDs
DTDs are schema. They specify the elements, attributes, and relationships that a valid XML document can contain.

There are other schema languages for XML such as XML schema, and each schema language has its costs and benefits.

Some Pros of using DTDs:

· They are compact and easily comprehended with a little direction.

· They can be defined inline (internal DTDs) for quick development.

· They can define entities.

· They are likely the most widely accepted and are supported by most XML parsers.

Some Cons of using DTDs:

· They are not written using XML syntax, and require parsers to support an additional language.

· They do not support Namespaces.

· They do not have data typing (requiring data to be an integer, a string, or a date, etc.), thereby decreasing the strength of the validation.
· They have limited capacity to define how many child elements can nest within a given parent element.

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

