XML Schema Basics
In 2001, the W3C developed a new schema language to address many of the shortcomings of DTD. This schema language was named XML Schema. It is occasionally called XML Schema Definition (XSD). With version 1.1 of the language, it is known as XML Schema Definition Language (XSDL).
XML Schema, written in XML itself, is deeper and more powerful than a DTD. XML Schema includes system of data types that let you specify when an element should, for example, contain an integer, or a period of time, or a string. It supports namespaces. It also lets you define both local and global elements, thereby allowing two elements to have different definitions, even though they have the same name. In short, XML Schema gives you much more control over the contents of XML document.

Working with XML Schema

An XML Schema specifies the structure of valid XML documents by defining a set of elements, their relationships to each other, and the attributes that they can contain.

In XML Schema, an XML element can be defined as either a simple type or a complex type.

A simple type is an XML element that only contains text, whereas a complex type is an XML element that contains child elements and/or attributes.

A simple type element describes the text of an XML document. A complex type element describes its structure. There are four kinds of complex type elements: those that contain child elements; those that contain both child elements and text; those that contain only text; and those that are empty.
NOTE: One of the benefits of XML Schema is that it uses XML syntax.

NOTE: Because an XML Schema is an XML document, it must begin with an XML declaration, have one root element, and be well-formed, just like all other XML documents.

Understanding Simple and Complex Types:
	Simple Types
	XML Schema
	XML

	An element containing only text
	<xs:element name="subject" type="xs:string" />
	<subject>Cynthia Dibbs</subject>

	An attribute

NOTE: attributes are simple type elements since they contain neither child elements nor attributes. However, they always appear within complex type elements. (Complex type implicit/default Complex Content)
	<xs:element name="subject">

<xs:complexType>
<xs:attribute name="age" type="xs:positiveInteger" />

</xs:complexType>

</xs:element>
	<subject age="62" />

	
	
	

	Complex Types
	XML Schema
	XML

	1. An element containing text only. It is called "text only" and is a complex type element with simple content (allows text and attributes).
	<xs:element name="subject">
<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="age" type="xs:positiveInteger" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>
	<subject age="62">Cynthia Dibbs</subject>

	2. An element containing child elements. It is called "element only" and is a complex type element with complex content (allows children and attributes).
	<xs:element name="subject">
<xs:complexType>

<xs:complexContent>

<xs:restriction base="xs:anyType">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="age" type="xs:positiveInteger" />

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element>
	<subject>
<name>Cynthia Dibbs</name>

<age>62</age>

</subject>

	NOTE: The default derivation for complex type is:
Complex content that restricts anyType

With this default condition, you can and should always omit the <xs:complexContent> and <xs:restriction base="anyType"> elements from your XML Schema definitions of complex types.
	<xs:element name="subject">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="age" type="xs:positiveInteger" />

</xs:sequence>

</xs:complexType>

<xs:element>
	(omitted complexContent and restriction elements)

	3. An empty element containing attributes. It is called "empty element" and is also a complex type element with complex content. It is considered complex content because simple content allows text, and empty element cannot allow text content.
(NOTE: xs:complexContent and xs:restriction elements are committed because the default condition for complex types is derived from complexContent).
	<xs:element name="subject">

<xs:complexType>

<xs:attribute name="name" type="xs:string" />

<xs:attribute name="age" type="xs:positiveInteger" />

</xs:complexType>

<xs:element>
	<subject name="Cynthia Dibbs" age="62" />

	4. An element containing both complex content and simple content. It is called "mixed content", and it is a complex type element with both complex content and simple content. (allows text, child elements, and attributes)
(NOTE: xs:complexContent and xs:restriction elements are committed because the default condition for complex types is derived from complexContent).

NOTE: Mixed content elements are ideal for descriptive, text-based chunks of information. They are not very common in database-type applications.
	<xs:element name="subject">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="age" type="xs:positiveInteger" />

</xs:sequence>

</xs:complexType>

<xs:element>
	<subject>

The subject name is <name>Cynthia Dibbs</name> and with age <age>62</age> who is studying at CCSF.
</subject>

	
	
	

Beginning a Simple XML Schema
An XML Schema is a text-only document, and begin with a standard XML declaration. It is customarily saved with an .xsd extension, and its root element must be schema.

To begin an XML schema:

1. At the top of your document, type <?xml version="1.0"?>

2. Type <xs:schema to define the root element. The xs: is a namespace prefix.

3. Then, type xmlns:xs="http://www.w3.org/2001/XMLSchema" to declare the XML Schema namespace (xmlns). This also declares that the elements and data types that are part of this namespace should be prefixed with xs:.
NOTE: The W3C created a namespace which contains all XML Schema elements and data types. Once declared, in order to indicate that a particular element or data type should be considered part of the W3C’s XML Schema namespace, it must start with the xs: namespace prefix.

4. Type > to complete the root element’s tag.

5. Type your XML Schema’s rules.

6. Finally, type </xs:schema> to complete the root element.

XSD:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="customer">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="phone" type="xs:string" />

 <xs:element name="email" type="xs:string" />

 <xs:element name="age" type="xs:positiveInteger" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Associating an XML Schema with an XML Document

To validate an XML document against an XML Schema, you must specify the location of the XML Schema in the XML document itself.

To declare the XML Schema and its location:

1. Inside the definition of the root element of your XML document, type xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance". This allows you to define the location of your XML Schema in the next two steps.
2. Type xsi:noNamespaceSchemaLocation=
3. Finally, type "xsd.uri", where xsd.uri is the location of the XML Schema file against which you want to validate your XML file.
NOTE: the "xsd.uri" can refer to a file on the Internet, local area network, or your local computer.

XML:

<?xml version="1.0"?>

<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="xml_schema_sample.xsd">

 <name>John Smith</name>

 <phone>(415) 123-4567</phone>

 <email>jsmith@abc.com</email>

 <age>62</age>

</customer>
Annotating Schemas

Since an XML Schema is an XML document, you can include standard XML comments in your XML Schema document.

In addition, XML Schema offers the ability to add more structured comments to your document. XML Schema comments (also called annotations), can be parsed and processed, because they are elements themselves. Whereas XML comments are readable by people, they are ignored by parsers.

To annotate XML Schemas:

1. Type <xs:annotation>.
2. Next, type <xs:documentation> to begin the comment.
3. Type the comment.

4. Type </xs:documentation> to complete the comment.

5. Finally, type </xs:annotation> to complete the annotation.

XSD:

<?xml version="1.0" encoding="utf-8"?>

<!--

XML comments - ignored by parser.

-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>

 <xs:documentation>

XML Schema comments - also called annotation, can be parsed

and processed, because they are elements themselves.

You can create annotations anywhere in the XML Schema,

after the root element.

 </xs:documentation>

</xs:annotation>

</xs:schema>

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

