Defining Simple Types
In XML Schema, an element defined as a simple type can contain only text. In order words, it cannot have attributes or child elements. However, it is a little misleading to say it can only contain text. Rather, it is more accurate to say that it can only contain a value, because with XML Schema, you can declare that it can contain a particular kind of text. In other words, you can declare that an element contain only numbers, or only dates, or only boolean values, etc.
XML Schema includes a large collection of built-in simple types for the most common kinds of text. These include strings, boolean values, URLs, various date and time formats, and numbers of all kinds.

You can also apply restrictions, or facets, to these simple types in order to limit them further. You actually can create your own custom simple types. For example, you might want to define an element contain a string that matches a certain pattern (like a telephone number or product code). Or, you might want to define an element can only contain one of a specific set of dates. This feature allows you to more specifically and effectively define the acceptable element values that make up a valid XML document.
Defining a Simple Type Element

A simple type element can only contain a value; it may not contain any child elements, and it may not have any attributes.

You can define an XML element be a string, integer, boolean value, or one of the other simple data type that are built into the XML Schema language.

	XML element’s simple data type
	Description
	Sample

	xs:string
	The element will contain a string of characters
	<name>Cynthia Dibbs</name>

	xs:boolean
	The element will contain the values true or false (or, 1 or 0)
	<premier>true</premier>

	xs:anyURI

(as in URI and not URL)
	The element will contain a reference to a file on the Internet, a local area network, or even your computer
	<anyuri>mailto:name1@abc.com</anyuri>

<anyuri>http://www.abc.com/XSD/</anyuri>

<anyuri>*.abc.com/*</anyuri>

<anyuri>logo.jpg</anyuri>

<anyuri>http://hills.ccsf.edu/php/pgm.php?sid=123456</anyuri>

	xs:date
	The element’s content will be date. It must be formatted YYYY-MM-DD.
	<hire_date>2015-01-15</hire_date>

	xs:time
	The element’s content be the time of day. It must be formatted hh:mm:ss. (Time is written in “military” or universal format)
	<start_time>16:21:00</start_time>

	xs:dateTime
	The element’s content be a date and time. It should be formatted YYYY-MM-DDThh:mm:ss. That is, 4:21p.m. on May 23, 2015 would be written as:
	<create_date_time>2015-05-23T16:21:00-05:00</create_date_time>
<!-- NOTE: That is 4:21 p.m. on May 23, 2015, and it is -5 hour offset from UTC (-05:00).
-->

	xs:duration
	The element’s content be an amount of time. It must be formatted as PnYnMnDTnHnMnS, where P is always required (it stands for Period), and T is only required if you have any time units. Each n indicates how many of the following units there are: Years, Months, Days, Hours, Minutes, Seconds, and is a non-optional, non-negative integer. For example, 3 months, 4 days, 6 hours, and 17 minutes would be written: P3M4DT6H17M. In addition, 5 Days would be written: P5D.
NOTE: you can also add an optional leading hyphen to indicate that the duration goes back in time (not forward). For example, -P90D would mean 90 days ago.
	<strike_length>P5D</strike_length>

	xs:gYear
	The element’s content be a year. It should be formatted YYYY.
	<year_built>1995</year_built>

	xs:gYearMonth
	The element’s content be a year and month. It should be formatted YYYY-MM.
	<member_since>2010-05</member_since>

	xs:gMonth
	The element’s content be a month. It should be formatted –MM (That’s is two initial dashes: One to represent the “missing” year, and one to act as a separator). For example, April would be written as --04.
	<birth_month>--04</birth_month>

	xs:gMonthDay
	The element’s content be the day of a month. It should be formatted --MM-DD. (Two initial dashes: One to represent the “missing” year, and one to act as a separator.) For example, February 29th would be written as --02-29.
	<leap_day>--02-29</leap_day>

	xs:gDay
	The element’s content be a day of the month. It should be formatted ---DD. (Three initial dashes: One for “missing” year, one for “missing” month, and one for separator.) For example, 7th day of the month would be written as ---07.
	<bill_day>---07</bill_day>

	xs:decimal
	The element’s content be either positive or negative numbers that have a finite number of digits on either side of the optional decimal point, such as 4.26, -100, or 0.
	<price>4.26</price>

	xs:integer
	The element’s content be positive or negative whole numbers; that is, those that have no fractional part, like 542, or -7
	<number_of_employee>2500</number_of_employee>

	xs:positiveInteger

xs:negativeInteger

xs:nonPositiveInteger

xs:nonNegativeInteger
	positiveInteger such as (1,2,etc).
negativeInteger such as (-1, -2, etc).

nonPositiveInteger such as (0, -1, -2, etc)

nonNegativeInteger such as (0, 1, 2, etc)
	

	xs:int
	The element’s content be a signed 32-bit integer, often used for database ID fields.
	<uid>123</uid>

	xs:float
	The element’s content be single precision, 32-bit floating point numbers like 43e-2. This includes positive and negative zero (0 and -0), positive and negative infinity (INF and –INF), and “not a number” (NaN).
	

	
	
	

NOTE: All time types can also end with an optional time zone indicator. You would type Z for UTC or one of –hh:mm or +hh:mm to indicate an offset from UTC. UTC (Coordinated Universal Time) is the same as Greenwich Mean Time.

Time types can also include fractional seconds in the format hh:mm:ss.sss. You can include as many digits as you would like.

The g in the simple types stands for Gregorian. This refers to the Gregorian calendar.

NOTE: You can find more number types explained at: www.w3.org/TR/xmlschema-2/, such as short, byte, etc…

You can also use the above types as the foundation on which to define your own data types.

To define a simple type element:

1. Type <xs:element to begin the definition.

2. Then, type name="label", where label is the name of the XML element that you are defining.

3. Next, type type="
4. Then, to identity your XML element’s simple data type defined above:
such as xs:string, or xs:decimal, or xs:Boolean, or xs:date, etc…

5. Next, type " to complete the data type.

6. Finally, type /> to complete the definition.

XSD:

<xs:element name="name" type="xs:string" />

 <xs:element name="credit_limit" type="xs:decimal" />
XML:

 <name>John Smith</name>

 <credit_limit>100000.00</credit_limit>
Predefining an Element’s Content
There are two ways to use an XML Schema to predefine what an element’s content should be. You can either set the element’s value using a fixed value. Or, you can set the element’s value if it is empty or omitted using a default value.
To set an element’s value:

1. Within the element tag, type fixed=.

2. Then, type "value", where value is what the element must be equal to, in order to be considered valid (unless the element is omitted from the XML document, which is also valid).

XSD:
<xs:element name="member_type" type="xs:string" fixed="vip" />

XML1:

<member_type>vip</member_type>

XML2:

<member_type></member_type>

XML3:

<member_type>gold</member_type>

NOTE: The first XML (XML1) is valid because the member_type element matches the fixed value from the XML Schema. The second XML (XML2) is also valid because the element is empty so it is set to the fixed value. The third XML (XML3) is not valid because it does not match the fixed value.
NOTE: The fixed attribute only sets the content if the element actually appears empty in the XML. If it is omitted, then no content is set.

If the element has a value that is different from the fixed value, then the XML document is not valid.

To set an element’s default value:

1. Within the element tag, type default=
2. Then, type "value", where value is what the element will be equal to, if the element is empty or omitted.

XSD:

<xs:element name="member_type" type="xs:string" default="vip" />

XML1:

<member_type>vip</member_type>

XML2:

<member_type></member_type>

XML3:

<member_type>gold</member_type>

NOTE: All these XML (XML1, XML2, XML3) examples are valid based on the XML Schema. The default attribute only sets an initial value, and any other value is also acceptable.
NOTE: The default attribute sets the content if the element appears empty in the XML or if it is omitted. If the element has a value that is different from the default value, the XML document is valid, and the element’s value is the one specified in the XML document.

NOTE: You cannot set both a default and a fixed attribute at the same time. Since they contradict each other, an XML Schema processor will not allow this.

Deriving Custom Simple Types

The XML Schema language contains many built-in simple types. Using these types as a foundation, the language allows you to derive your own custom simple types.

To derive a custom simple type:

1. First, identify the name of the XML element that you are using XML Schema to define. To do so, type <xs:element name= "label ">, where label is the name of the XML element.

2. Type <xs:simpleType> to start deriving your custom simple type.

3. Type <xs:restriction base= "foundation ">, where foundation is any one of the built-in simple types upon which you would like to base your custom type.

4. Specify as many restrictions (or facets) as necessary to define your new custom type. Facets, which are the way that you can customize built-in simple types, are xs:maxInclusive, xs:maxExclusive, xs:minInclusive, xs:minExclusive, xs:enumeration, xs:length, xs:minLength, xs:maxLength, xs:pattern, xs:totalDigits, xs:fractionDigits
5. Type </xs:restriction>.

6. Type </xs:simpleType> to complete your new custom simple type.

7. Finally, type </xs:element> to complete the definition of the element.

XSD to define length restriction:

<xs:element name="name">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="30" />

 </xs:restriction>

 </xs:simpleType>
</xs:element>

NOTE: This custom simple type is called an anonymous custom type. There is also such a thing as a named custom type. The difference between these two is that a named type can be used more than once, but the anonymous type (which has no name) can only be used for the element in which it is contained.
You can also create list simple type (See Deriving a List Type later).

Deriving Named Custom Types

If you are going to use a custom type to define more than one element in your XML Schema, you can name it. Then, each time you want to use it, you can include a cross-reference between the XML element and your new custom type.
To derive a named custom type:

1. Type <xs:sinpleType to start your custom simple type.

2. Then, type name="custom_type_name">, where custom_type_name identifies your new custom simple type.

3. Type <xs:restriction base="foundation">, where foundation is the simple type upon which you are building your custom type.

4. Specify as many restrictions (or facets) as you would like to define your new custom type. They are :

xs:maxInclusive, xs:maxExclusive, xs:minInclusive, xs:minExclusive, xs:enumeration, xs:length, xs:minLength, xs:maxLength, xs:pattern, xs:totalDigits, xs:fractionDigits

5. Type </xs:restriction>
6. Finally, type </xs:simpleType> to complete your custom simple type definition.

7. Then, to use your new custom type, for the definition of the element, you would type <xs:element name= "label " type= "custom_type_name ">, using the custom_type_name you defined in step 2 above.
XSD:
<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="name_type">

 <xs:restriction base="xs:string">

 <xs:length value="30" />

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="customer">

 <xs:complexType>

 <xs:sequence>

<xs:element name="name" type="name_type" />

 <xs:element name="name2" type="name_type" />

<xs:element name="name3" type="name_type" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML:

<?xml version="1.0" encoding="utf-8"?>

<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="simple_type_name_type.xsd">

 <name>John Smith </name>

 <name2>This name </name2>

 <name3>Something Else </name3>

</customer>

NOTE: Once you have defined your named custom type, you can use it instead of the simple types.

Notice that you refer to your new custom type as custom_type_name, instead of xs:custom_type_name. This is because the "xs: " prefix refers to the XML Schema namespace, and your new custom type is not part of that namespace.
Specifying a Range of Acceptable Values

In XML Schema, you can also place restrictions on what would be considered valid content. These restrictions are called facets. By using facets, you can create custom simple types as previous discussed. (Deriving Custom Simple Types and Deriving Named Custom Types)

One of the most common facets used is to specify the highest or lowest value (or both) that an XML element can have to be considered valid.

To specify the highest possible value:

1. Within a custom type definition (that is, within the restriction element), type <xs:maxInclusive. (Notice the capital I that begins the word Inclusive).

2. Then, type value="n", where the element’s content must be less than or equal to n in order to be valid.

3. Finally, type /> to end the facet.

XSD:

<xs:element name="total_bases">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:maxInclusive value="6856" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:

<total_bases>6855</total_bases>

XML2:

<total_bases>6856</total_bases>

NOTE: Both XML1 and XML2 are valid. (Less than and equal to)

Another way to specify the highest possible value:

1. Within a custom type definition, type <xs:maxExclusive (Notice the capital E that begins the word Exclusive).

2. Then, type value="n", where the element’s content must be less than (but not equal to) n in order to be valid.
3. Finally, type /> to end the facet.

XSD:

<xs:element name="total_bases">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:maxExclusive value="6856" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:

<total_bases>6855</total_bases>

XML2:

<total_bases>6856</total_bases>

NOTE: XML1 is valid, while XML2 is invalid. (Less than only, not equal to)
To specify the lowest possible value:

1. Within a custom type definition, type <xs:minInclusive. (Notice the capital I that begins the word Inclusive).
2. Then, type value="n", where the element’s content must be greater than or equal to n in order to be valid.

3. Finally, type /> to end the facet.
XSD:

<xs:element name="game_day">

 <xs:simpleType>

 <xs:restriction base="xs:date">

 <xs:minInclusive value="1954-04-13"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

XML1:

<game_day>1954-04-13</game_day>

XML2:

<game_day>1954-04-14</game_day>

NOTE: Both XML1 and XML2 are valid.
Another way to specify the lowest possible value:

1. Within a custom type definition, type <xs:minExclusive. (Notice the capital E that begins the word Exclusive).

2. Then, type value="n", where the element’s content must be greater than (but not equal to) n in order to be valid.

3. Finally, type /> to complete the facet.

NOTE: You cannot use the two min limits (or the two max limit) simultaneously for the same type (it would not make sense), you can mix and match the mins and maxes as needed (see below example). Of course, you can also use just one.

You can use these min and max facets with date, time, and numeric simple types.

For a date or time to be greater, it must represent a later date or time. For date or time to be less, it should represent an earlier date or time.

XSD:

<xs:element name="game_day">

 <xs:simpleType>

 <xs:restriction base="xs:date">

 <xs:minInclusive value="1954-04-13"/>

 <xs:maxInclusive value= "1976-10-03 "/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

XML1:

<game_day>1976-07-20</game_day>

XML2:

<game_day>2015-04-14</game_day>

NOTE: XML1 is valid, and XML2 is invalid.

Specifying a Set of Acceptable Values

To specify a set of acceptable values, you would use an enumeration facet.

To specify a set of acceptable values:

1. Within a custom type definition, type <xs:enumeration.

2. Then, type value= "choice ", to identify one acceptable choice for the content of the element or attribute.

3. Finally, type /> to complete the enumeration element.

4. Repeat Step 1 – 3 for each additional value choice that the element can have.

NOTE: Each enumeration value must be unique. Enumeration values may contain white space. You can use the xs:enumeration facet with all simple types, except Boolean.

XSD:
<xs:element name="fruit">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="apple" />

 <xs:enumeration value="blue berries" />

 <xs:enumeration value="kiwi" />

 <xs:enumeration value="orange" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:

<fruit>apple</fruit>

XML2:
<fruit>berries</fruit>

XML3:
<fruit>grape</fruit>
NOTE: XML1 is valid; XML2 and XML3 are not valid.

Limiting the Length of an Element

One of the ways you can further restrict an XML element with a custom type is to use a facet that specifies or limits its length.

To specify the exact length of an element:

· Within a custom type definition, type <xs:length value="g" />, where g is the number of characters that the element must have.

XSD:
<xs:element name="user_id">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML:
<user_id>hyip0001</user_id>

To specify the minimum length of an element:

· Within a custom type definition, type <xs:minLength value="n" />, where n is the minimum length in characters of the element.
To specify the maximum length of an element:

· Within a custom type definition type <xs:maxLength value="x" />, where x is the maximum length in characters of the element.

NOTE: You can use the length facet with string and other string-based XML Schema simple types such as anyURI or hexBinary.

The values for xs:length, xs:minLength, and xs:maxLength must all be non-negative integers.

If the element is based on a binary type, such as hexBinary, the length facet limits the number of octets of binary data. If the element is derived by list, the length facet limits the number of list items.

Specifying a Pattern for an Element
In XML Schema, you can also restrict what a valid XML element can contain using a pattern facet. To construct a pattern, you use a regular expression (regex) language. This enables you to define a pattern that the XML element’s content must match in order to be considered valid.

The regex language in XML Schema is based on Perl’s regex language.

To specify a pattern for an element:

1. Within a custom type definition, type <xs:pattern.

2. Then, type value="regex", where regex is the regular expression that the XML element’s content must match.

Regular expressions are made up of letters, numbers, and special symbols; in the order which those letters, numbers, and symbols should appear in the content.

	Symbol
	Description

	.
	(a period) for any character at all

	\d
	For any digit

	\D
	For any non-digit

	\s
	For any white space (including space, tab, newline, and return)

	\S
	For any character that is not white space

	x*
	To have zero or more x’s

	(xy)*
	To have zero or more xy’s

	x?
	To have zero or one x

	(xy)?
	To have zero or one xy

	x+
	To have one or more x’s

	(xy)+
	To have one or more xy’s

	[abc]
	To include one of a group of values (choose a,b, or c)

	[0-9]
	To include the range of values from 0 to 9 (choose a single number from a range 0 to 9)

	this | that
	To have this or that in the content. Separate additional choices with additional vertical bars

	x{5}
	To have exactly 5 x’s (in a row)

	x{5,}
	To have at least 5 x’s (in a row)

	x{5,8}
	To have at least 5 and at most 8 x’s (in a row)

	(xyz){2}
	To have exactly two xyz’s (in a row)

	
	

NOTE: Parentheses control what the curly brackets and other modifiers, such as ?, +, and *, affect.

3. Finally, type /> to complete the xs:pattern element.

NOTE: You can find more specific information about XML Schema regular expressions at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#regexs
The regular expression used in XML Schema are very similar to those used in Perl. However, one important technical difference is that in XML Schema regex, the comparison is always made between the regular expression and the entire contents of the element. There are no ^ or $ characters to limit a match to the beginning or end of a line (as there are in Perl).

You can use the pattern facet with any of the simple types.

XSD:
<xs:element name="product_id">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="P_\d{4}" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:
<product_id>P_0100</product_id>

XML2:

<product_id>1020_P</product_id>

NOTE: XML1 is valid, XML2 is invalid.

XSD:
<xs:element name="p_time">

 <xs:simpleType>

 <xs:restriction base="xs:duration">

 <xs:pattern value="PT\d+H\d+M\d+S" />

 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:

<p_time>PT5H23M10S</p_time>

XML2:

<p_time>PT14H2M50S</p_time>

NOTE: Both XML1 and XML2 are valid.

Limiting a Number’s Digits
In XML Schema, you can limit the total number of digits, as well as the number of digits after the decimal point of numeric elements.

To specify the total number of digits in a number:

1. Within a custom type definition, type <xs:totalDigits.

2. Then, type value= "n ", where n is the maximum number of digits that can appear in the number.

3. Finally, type /> to complete the xs:totalDigits facet.

To specify the number of digits after the decimal point:

1. Within a custom type definition, type <xs:fractionDigits.

2. Then, type value= "n ", where n is the maximum number of digits that can appear after the decimal in the number.

3. Finally, type /> to complete the xs:fractionDigits facet.

NOTE: You may use either of these facets with any numerical type.

The xs:totalDigits facet must be a positive number, and it may not be less than the xs:fractionDigits value.

The xs:fractionDigits facet must be a non-negative integer (0, 1, 2, or higher).

Both facets specify the maximum values allowed. The number is still considered valid if fewev digits are present.

XSD:
<xs:element name="atomic_weight">

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:totalDigits value="6" />
 <xs:fractionDigits value=”4” />
 </xs:restriction>

 </xs:simpleType>

</xs:element>
XML1:

<atomic_weight>12.0107</atomic_weight>

XML2:

<atomic_weight>55.845</atomic_weight>

XML3:

<atomic_weight>196.9665</atomic_weight>

XML4:

<atomic_weight>1.00794</atomic_weight>

NOTE: XML1 and XML2 are valid. XML3 and XML4 are not valid.

Deriving a List Type

So far, your element can only contain one unit each. If you define an element as a date, it can contain just one date. But if you need an element to contain an entire list of dates, then you could derive a list type from the date type to accommodate the situation.

To derive a list type:

1. First, define an element by typing <xs:element name= "label ">, where label is the name of the XML element.

2. Type <xs:simpleType> to start deriving your custom simple type.

3. Type <xs:list itemType= "list_element " />, where list_element is the simple type (built-in or custom) that define each individual unit in your list.

4. Type </xs:simpleType> to complete your new custom simple type.

5. Finally, type </xs:element> to complete the definition of the element.

XSD:
 <xs:element name="recent_eclipses">

 <xs:simpleType>

 <xs:list itemType="xs:dateTime" />

 </xs:simpleType>

</xs:element>
XML:

<recent_eclipses>

2008-02-21T03:26:00Z

2007-08-28T10:37:00Z

</recent_eclipses>
NOTE: Lists should not be confused with enumerations. Enumerations provide a set of optional values for an element. Lists are sequences of values within the element itself.

In a list, white space separate one item from the next. Therefore, a list of strings will be misinterpreted if any item in the list has a space itself.

To derive a named list type:

As with derived simple types, if you are not going to reuse the list, create an anonymous list type. If you are going to reuse the list, then create a named list type.
XSD:
<xs:simpleType name="dateTime_list">

 <xs:list itemType="xs:dateTime" />

</xs:simpleType>

<xs:element name="recent_eclipses" type="dateTime_list" />

<xs:element name="recent_eclipses2" type="dateTime_list" />

XML:

<recent_eclipses>2008-02-21T03:26:00Z 2007-08-28T10:37:00Z</recent_eclipses>

<recent_eclipses2>2010-12-21T08:17:00Z
2011-06-15T20:13:00Z
2011-12-10T14:32:00Z</recent_eclipses2>

Deriving a Union Type

To define an XML element to be one of two (or more) different simple types, you can derive a new type as the combination of these other simple types. This newly derived simple type is called a union, and is made from a group of other simple types.

To derive a union:

1. First type <xs:element name="label">, where label is the name of the XML element.

2. Then, type <xs:simpleType> to start your custom simple type.

3. Type <xs:union memberTypes="union_elements" />, where union_elements is a white-space separated group of simple type (built-in or custom) that define the valid simple types for this element.
4. Type </xs:simpleType> to complete your new custom simple type.

5. Finally, type >/xs:element> to complete the definition of the element.

NOTE: As with derived simple types, if you are not going to reuse the union, create an anonymous union type. If you are going to reuse the union, then you would create a named union type.

XSD (derive a custom named union type):

<xs:simpleType name="isbn10">

 <xs:restriction base="xs:string">

 <xs:pattern value="\d{9}[\d|X]" />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="isbn13">

 <xs:restriction base="xs:string">

 <xs:pattern value="\d{3}-\d{10}" />

 </xs:restriction>

</xs:simpleType>

<xs:element name="book">

 <xs:simpleType>

 <xs:union memberTypes="isbn10 isbn13" />

 </xs:simpleType>

</xs:element>
XML1:

<book>0452286751</book>
XML2:
<book>044508376X</book>

XML3:

<book>978-0321559678</book>
NOTE: All XML1, XML2, and XML3 are valid.

References:
New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

