The Limits of DTDs
DTDs are commonly used for validation largely because of XML’s origins as an offshoot of SGML. SGML was originally designed for text-based documents. However, today XML is being used for a wider range of document types, and several limitations have prompted XML developers to explore alternatives to DTDs.

· DTD is lack of data types

· DTD does not recognize namespaces

· DTD employs a syntax called Extended Backus Naur Form (EBNF), which is different from the syntax used for XML. (i.e. developers must be able to work with the syntax for XML and EBNF, this will add overhead cost)
Schema and DTDs

A schema is an XML document that can validate the content and structure of other XML documents.

The XML document to be validated is called the instance document.

Schemas have a number of advantages over DTDs:

· XML parsers need to understand only XML (thus all of the tools used to create an instance document can also be applied to designing the schema).

· Schemas support more data types.

· Schemas are more flexible than DTDs in dealing with mixed content.
· Schemas provide support for namespaces, making it easier to validate compound documents.

	Feature
	Schemas
	DTDs

	Document language
	XML
	Extended Backus Naur Form (EBNF)

	Standards
	Multiple standards
	One standard

	Supported data types
	44
	10

	Customized data types
	Yes
	No

	Mixed content
	Easy to develop
	Difficult to develop

	Namespaces
	Complete supported
	Only namespace prefixes are supported

	Entities
	No
	yes

NOTE: DTDs represent an older standard for XML documents and are more widely supported. It is not unusual for an XML document to use both a schema and a DTD.
NOTE: you can convert DTD files to XML schema files using the dtd2xs converter, available at http://www.w3.org/XML/Schema.
Starting a Schema File

DTDs can be divided into internal and external subsets but a schema is always placed in a separate XML document. A file written in XML Schema typically ends with the “.xsd” file extension.

The root element in any XML Schema document is the schema element. In order for a parser to recognize that the document is written in the XML Schema vocabulary, the schema element must include a declaration for the XML Schema namespace using the URI http://www.w3.org/2001/XMLSchema.

<schema xmlns=http://www.w3.org/2001/XMLSchema>

Schema content

</schema>

Where schema content is the list of elements and attributes that define the structure of the instance document. By convention, the namespace prefix xsd or xs is assigned to the XML Schema namespace in order to identify elements and attributes that belong to the XML Schema vocabulary. Keeping well-defined namespaces in an XML Schema document becomes very important when you start creating schemas for compound documents involving several namespaces.
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

Schema content

</xs:schema>

You may alternatively set XML Schema as the document’s default namespace and thus not need any prefix. The only requirement is that you be consistent in applying (or not applying) the namespace prefix.
Understanding Simple and Complex Types

XML Schema supports two types of content: simple and complex.
A simple type contains a single value, such as the value of an attribute or the textual content of an element.

A complex type contains one or more values placed within a defined structure.

	Simple Types
	Examples

	An element containing only text
	<subject>Cynthia Dibbs</subject>

	An attribute
	<subject age=”62” />

	Complex Types
	Examples

	An empty element containing attributes
	<subject name=”Cynthia Dibbs” age=”62” />

	An element containing text and an attribute
	<subject age=”62”>Cynthia Dibbs</subject>

	An element containing child elements
	<subject>

 <name>Cynthia Dibbs</name>

 <age>62</age>

</subject>

	An element containing child elements and an attribute
	<subject age=”62”>

 <name>Cynthia Dibbs</name>

</subject>

Working with Simple Type Elements
Simple type elements are defined within an XML Schema document using the empty element.
<xs:element name=”name” type=”type” />

Where name is the name of the element in the instance document and type is the type of data stored in the element. XML Schema supports a collection of built-in data types and also allows programmers to define their own. If you use one of the built-in data types, you have to indicate that it belongs to the XML Schema namespace.

<xs:element name=”name” type=”xs:type” />

Where type is now a particular data type used by XML Schema. If you use a different namespace prefix or declare XML Schema as the default namespace for the document, the prefix will be different.

<xs:element name=”lastName” type=”xs:string” />

The most commonly used data type in XML Schema is string, which allows an element to contain any text string.

Declaring an Attribute
An attribute is another example of a simple type.

<xs:attribute name=”name” type=”type” default=”default” fixed=”fixed” />

Where name is the name of the attribute, type is the data type, default is the attribute’s default value, and fixed is a fixed value for the attribute.
<xs:attribute name=”Gender” type=”xs:string” default=”female” />

The default and fixed attributes are optional. You use them when you want to specify a default attribute value (applied when no attribute value is entered in the instance document) or when you want to fix an attribute to a specific value.

Associating Attributes and Elements

The basic structure for defining a complex type element with XML Schema is:

<xs:element name=”name”>

<xs:complexType>

Declarations

</xs:complexType>

</xs:element>

Where name is the name of the element and declarations is schema commands specific to the type of complex element being defined.

Four complex type elements that usually appear in an instance document are the following:

· The element is an empty element and contains only attributes.
· The element contains textual content and attribute but no child elements.

· The element contains child elements but not attributes.

· The element contains both child elements and attributes.

Empty Elements and Attributes

<xs:element name=”name">

<xs:complexType>

attributes

</xs:complexType>

</xs:element>

Where attributes is the set of declarations that define the attributes associated with the element.

For example, the empty element:
<subject name=”Cynthia Dibbs” age=”62” />

has two attributes: name and age. The code for this complex type element:

<xs:element name=”subject”>

<xs:complexType>

<xs:attribute name=”name” type=”xs:string” />

<xs:attribute name=”age” type=”xs:string” />

</xs:complexType>

</xs:element>

NOTE: the order of the attribute declarations is unimportant. XML Schema allows attributes to be entered in any order within a complex type element.

Simple Content and Attributes

If an element is not empty and contains textual content (but no child elements), the structure of the complex type element is slightly different. In these cases, you must include a declaration indicating that the complex type contains simple content, and you must include a collection of one or more attributes.
<xs:element name=”name”>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=”type”>

attributes

</xs:extension>

</xs:simpleContent>

<xs:complexType>

</xs:element>

Where type is the data type of the element’s content and attributes is a list of the attributes associated with the element. The purpose of the <simpleContent> tag in this code is to indicate that the element contains simple content – that is, text with no child elements. However, since the element also contains attributes, you have to extend the content model to include attributes through the use of the <extension> tag. The simpleContent and extension elements are important tools used by XML Schema to derive new data types and design complex content models. In this case, you are using them to define complex element types that contain text and attributes.
<performance scale=”Karnofsky”>0.81</performance>
The code to associate the scale attribute with the performance element would therefore, be

<xs:element name=”performance”>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=”xs:string”>

<xs:attribute name=”scale” type=”xs:string” />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

Specifying the Use of an Attribute

An attribute may or may not be required with a particular element. To indicate whether an attribute is required, you add the use attribute to the element declaration or reference. The “use” attribute has the following values:

· required – The attribute must always appear with the element

· optional – The use of the attribute is optional with the element

· prohibited – The attribute cannot be used with the element

<xs:attribute name=”scale” type=”xs:string” use=”required” />

NOTE: if you neglect to add the use attribute to an element declaration, the parser assumes that the attribute is optional.

Referencing an Element or Attribute
You have already declared the “scale” attribute in your schema document. You could revise your code to nest that attribute declaration within the declaration for the “performance” element; however XML schema allows for a great deal of flexibility in designing complex types. Rather than nesting the attribute declaration within the element, you can create a reference to it.

<xs:element ref=”elemName” />

<xs:attribute ref=”attName” />

Where elemName is the name used in an element declaration and attName is the name used in an attribute declaration.

<xs:attribute name=”scale” type=”xs:string” />

<xs:element name=”performance”>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base=”xs:string”>

 <xs:attribute ref=”scale” use=”required” />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

NOTE: Declaration that are placed as children of the root schema element have global scope and can be referenced throughout the schema file. Thus, rather than repeating the same attribute declaration, you can declare it once and reference it throughout the schema. On the other hand, a declaration that is nested within a complex type has local scope and is available only to that complex type. This avoids the confusion of an attribute or element being reused in different contexts throughout the schema.

Working with Child Elements

Another kind of complex type element contains child elements, but no attributes.

<xs:element name=”name”>

<xs:complexType>

<xs:compositor>

elements

</xs:compositor>

</xs:complexType>

</xs:element>

Where elements is the list of simple type element declarations for each child element, and compositor defines how the child elements are organized.

Using Compositors

XML Schema supports the following compositors:

· sequence defines a specific order for the child elements
· choice allows any one of the child elements to appear in the instance document

· all allows any of the child elements to appear in any order in the instance document; however, they must appear either only once or not all.

For example, the following complex type assigns four child elements – street, city, state, and country – to the address element. Because the complex type uses the sequence compositor, the document will be invalid if the address element doesn’t contain all of these child elements in the specified order.
<xs:element name=”address”>

<xs:complexType>

<xs:sequence>

<xs:element name=”street” type=”xs:string” />

<xs:element name=”city” type=”xs:string” />

<xs:element name=”state” type=”xs:string” />

<xs:element name=”country” type=”xs.string” />

</xs:sequence>

</xs:complexType>

</xs:element>
The following declaration allows XML authors to choose between parent and guardian as the child element of the sponsor element. Because the complexType uses the choice compositor, the sponsor element can contain either element, but not both.
<xs:element name=”sponsor”>

<xs:complexType>

<xs:choice>

<xs:element name=”parent” type=”xs:string” />

<xs:element name=”guardian” type=”xs:string” />

</xs:choice>

</xs:complexType>

</xs:element>

Finally, the following code uses the all compositor to allow the Family element to contain an element named “Father” and/or an element named “Mother”, in no particular order:

<xs:element name=”Family”>

<xs:complexType>

<xs:all>

<xs:element name=”Father” type=”xs:string” />

<xs:element name=”Mother” type=”xs:string” />

</xs:all>

</xs:complexType>

</xs:element>
Compositors can be nested and combined with each other. The following code uses choice compositors to allow the Account element to contain either the Person or Company element followed by either the Cash or Credit element:

<xs:element name=”Account”>

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element name=”Person” type=”xs:string” />

<xs:element name=”Company” type=”xs:string” />

</xs:choice>

<xs:choice>

<xs:element name=”Cash” type=”xs:string” />

<xs:element name=”Credit” type=”xs.string” />

</xs:choice>

</xs:sequence>

</xs:complexType>
</xs:element>
NOTE: the only restriction with combining compositors occurs when using the all compositor. A complex type element can contain only one all compositor, and the all compositor must appear as the first child of the complex type element. You cannot combine the all compositor with either the choice or sequence compositors.

Specifying the Occurrences of an Item

To specify the number of times each element appears in the instance document, you can use the minOccurs and maxOccurs attributes.

The following element declaration specifies that the patient element appears one to three times in the instance document:

<xs:element name=”patient” type=”xs:string” minOccurs=”1” maxOccurs=”3” />

NOTE:

· Any time the minOccurs attribute is set to 0, the declared item is optional.
· The maxOccurs attribute can be any positive value, or it can have a value of “unbounded” for unlimited occurrences of the child element.

· If a value is specified for the minOccurs attribute, but the maxOccurs attribute is missing, the value of the maxOccurs attribute is assumed to be equal to the value of the minOccurs attribute.

· Finally, if both attributes are missing, their values are assumed to be 1.

The minOccurs and maxOccurs attributes can also be used with compositors to repeat entire sequences of items. In the following code, the sequence of three child elements (FirstName, MiddleName, LastName) can be repeated countless times within the Customer element:

<xs:element name=”Customer”>

<xs:complexType>

<xs:sequence minOccurs=”1” maxOccurs=”unbounded”>

<xs:element name=”FirstName” type=”xs:string” />

<xs:element name=”MiddleName” type=”xs:string” />

<xs:element name=”LastName” type=”xs:string” />

</xs:sequence>

</xs:complexType>

</xs:element>

Working with Child Elements and Attributes

The code for a complex type element that contains both attributes and child elements is:

<xs:element name=”name”>

<xs:complexType>

<xs:compositor>

elements

</xs:compositor>

</xs:complexType>

attributes

</xs:element>

Note that this code structure is the same as the one we used for the child elements, with a list of attributes added.

<xs:element name=”patient”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”lastName” />

<xs:element ref=”firstName” />

<xs:element ref=”dateOfBirth” />

</xs:sequence>

<xs:attribute ref=”patID” use=”required” />

<xs:attribute ref=”onStudy” use=”required” />

</xs:complexType>

</xs:element>

Specifying Mixed Content

One of the limitation of using DTD is their inability to define mixed content, which is an element that contains both text and child elements.
XML Schema gives you more control over mixed content. To specify that an element contains both text and child elements, add the mixed attribute to the <complexType> tag. When the mixed attribute is set to the value “true”, XML Schema assumes that the element contains both text and child elements.

<Summary>

Patient <Name>Cynthia Davis</Name> was enrolled in the

<Study>Tamoxifen Study</Study> on 8/15/2011.

</Summary>

Can be declared in the schema file using the following complex type:

<element name=”Summary”>

<complexType mixed=”true”>

<sequence>

<element name=”Name” type=”string” />

<element name=”Study” type=”string” />

</sequence>

</complexType>

</element>

NOTE that XML Schema allows content text to appear before, between, and after any of the child elements>

[Name and Study are child elements, others are text contents]

Working with XML Schema Data Types
XML Schema supports two general categories of data types: built-in and user-derived.

A built-in data type is part of the XML Schema language and is available to all XML Schema authors.

A user-derived data type is created by a schema author for specific data values in a instance document.
NOTE: built-in data types need to be placed in the XML Schema namespace.
XML Schema divides its built-in data types into two classes: primitive and derived.

· A primitive data type, or base type, is one of 19 fundamental data types that are not defined in terms of other types.

· A derived data type is a collection of 25 data types that the XML Schema developers crated based on the 19 primitive types.

(See Figure 4-15, page 168)

NOTE: Derived data types share many of the same characteristics as the primitive data types they are derived from, but with a restriction or a modification added to create a new data type.

String Data Types

The string data type is the most general of XML Schema’s built-in data types, and for that reason it’s not very useful if you need to exert more control over element and attribute values in an instance document. XML Schema provides several derived data types that enable you to restrict text strings.
The following table describes some of these types.

	Data Type
	Description

	xs:string
	A text string containing all legal characters from the ISO/IEC character set, including all white space characters

	xs:normalizedString
	A text string in which all white space characters are replaced with blank spaces.

	xs:token
	A text string in which blank spaces are replaced with a single blank space; opening and closing spaces are removed.

	xs:NMTOKEN
	A text string containing valid XML names with no white space.

	xs:NMTOKENS
	A list of NMTOKEN data values separated by white space.

	xs:Name
	A text string similar to the NMTOKEN data type except that names must begin with a letter or the character “:” or “-“.

	xs:NCName
	A “noncolonized name” derived from the Name data type but restricting the use of colons anywhere in the name.

	xs:ID
	A unique ID name found nowhere else in the instance document.

	xs:IDREF
	A reference to an ID value found in the instance document.

	xs:IDREFS
	A list of ID references separated by white space.

	xs:ENTITY
	A value matching an unparsed entity defined in a DTD.

	xs:ENTITIES
	A list of entity values matching an unparsed entity derived in a DTD.

NOTE: the ID type allows text strings containing unique ID values, and the IDREF and IDREFS data types allow only text strings that contain references to ID values located in the instance document. Thus, with these data types, the content of a text string is restricted to unique values or references.

For example, patient ID can be changed from string to ID data type:
<xs:attribute name="patID" type="xs:ID" />
Numeric Data Types

Unlike DTD, schemas do allow numeric data types. Most numeric types are derived from four primitive data types: decimal, double, float, and boolean. The following table describes some of the numeric data types supported by XML Schema.

	Data Type
	Description

	xs:decimal
	A decimal number in which the decimal separator is always a dot (.) with a leading + or – character allowed; no non-numeric characters are allowed, nor is exponential notation.

	xs:integer
	An integer.

	xs:nonPositiveInteger
	An integer less than or equal to zero.

	xs:negativeInteger
	An integer less than zero.

	xs:nonNegativeInteger
	An integer greater than or equal to zero.

	xs:positiveInteger
	An integer greater than zero.

	xs:float
	A floating point number allowing decimal values and values in scientific notation; infinite values can be represented by –INF and INF, non-numeric values can be represented by NaN.

	xs:double
	A double precision floating point number.

	xs:boolean
	A Boolean value that has the value true, false, 0, or 1.

For example, age element is a positive integer, and the performance element is decimal data type.
<xs:element name="age" type="xs:positiveInteger" />
<xs:element name="performance">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:decimal">

<xs:attribute ref="scale" use="required" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>
Dates and Times
XML Schema provides several data types for dates and times and durations. However, XML Schema does not allow for any flexibility in the date and time format. Date values must be entered in the format:
yyyy-mm-dd

Where yyyy is the four-digit year value, mm is the two-digit month value, and dd is the two-digit day value.

Month values range from “01” to “12”, while day values range from “01” to “31”.

The following is a valid date:

2008-01-08

The following is an invalid date:

2008-1-8

NOTE: To support a date format such as 1/8/2008 or Jan. 8, 2008, you need to create a user-derived data type that matches the date pattern you want to use.

Times in XML Schema must be entered using 24-hour (or military) time. The format is:

hh:mm:ss

where hh is the hour value ranging from “0” to “23”, and mm and ss are the minutes and seconds values ranging from “00” to “59”.

NOTE: There is no data type for expressing time in the 12-hour AM/PM format, but you can create a custom data type for that time pattern.

NOTE: In the time format, each time value (hours, minutes, and seconds) must be specified. Thus, the following time format is invalid, since it does not specify a value for seconds:

15:45

The following table summarizes the different date and time formats supported by XML Schema:

	Data Type
	Description

	xs:datetime
	A date and time entered in the format yyyy-mm-ddThh:mm:ss

Where yyyy is the four-digit year, mm is the two-digit month, dd is the two-digit day, T is the time zone, hh is the two-digit hour, mm is the two-digit minute, and ss is the two-digit second.

	xs:date
	A date entered in the format yyyy-mm-dd

	xs:time
	A time entered in the format hh:mm:ss

	xs:gYearMonthDay
	A date based on the Gregorian calendar entered in the format yyyy-mm-dd (equivalent to xs:date)

	xs:gYearMonth
	A date entered in the format yyyy-mm (no day is specified)

	xs:gYear
	A year entered in the format yyyy

	xs:gMonthDay
	A month and day entered in the format –mm-dd

	xs:gMonth
	A month entered in the format --mm

	xs:gDay
	A day entered in the format ---dd

	xs:duration
	A time duration entered in the format PyYmMdDhHmMsS
Where y, m, d, h, m and s are the duration values in years, months, days, hours, minutes, and seconds; an optional negative sign is also permitted to indicate a negative time duration

For example, dateOfBirth data type is xs:date:
<xs:element name="dateOfBirth" type="xs:date" />
Deriving New Data Types
In addition to the built-in data types, you also may need to create some new data types to validate the document.

New data types are considered simple types because they contain values like attributes and simple type elements. Thus, to create a new data type, you create a new simple type using the code:

<xs:simpleType name=”name”>

RULES

</xs:simpleType>

Where name is the name of the user-defined data type and RULES is the list of statements that define the properties of the data type.

User-derived data types fall into three general categories: list, union, and restriction.
Deriving a List Data Type

A list data type is a list of values separated by white space, in which, each item in the list is derived from an established data type.

<xs:simpleType name=”name”>

<xs:list itemType=”type” />

</xs:simpleType>

Where name is the name assigned to the list data type and type is the data type from which each item in the list is derived.
For example weekly White Blood Cell Count, an element containing this information might appear as follows:

<wbc>15.1 15.8 12.0 9.3 7.1 5.2 4.3</wbc>

NOTE: A list data type must always use white space as the delimiter. You cannot use commas or other non-white space characters.

To create a data type for this information, you could add the following simple type to the schema:

<xs:simpleType name=”wbcList”>

<xs:list itemType=”xs:decimal” />

</xs:simpleType>

To apply this new data type to the wbc element, you add the data type to the element declaration:

<xs:element name=”wbc” type=”wbcList” />

NOTICE that the type value does not have the xs prefix, because wbcList is not part of the XML Schema namespace.

Deriving a Union Data Type

A union data type is composed of the value and/or lexical spaces from any number of base types. Each of the base types is known as a member type. When a union data type is validated, the validating parser examines each member type in the order in which it is defined in the schema.

<xs:simpleType name=”name”>

<xs:union memberType=”type1 type2 type3 …” />

</xs:simpleType>

Where type1, type2, type3, etc.. are the member types that comprise the union. XML Schema also allows unions to be created from nested simple types.

<xs:simpleType name=”nmame”>

<xs:union>

<xs:simpleType>

Rules1

</xs:simpleType>

<xs:simpleType>

Rules2

</xs:simpleType>

</xs:union>
</xs:simpleType>
Where Rules1, Rules2, etc. are the rules for creating different user-derived data types within the union.
For weekly White Blood Cell count, it may contain precise counts as well as more narrative levels – such as high, normal, or low.

<wbc>15.9 high 14.2 9.8 normal low 5.3</wbc>

To validate this element containing a mixture of numeric and descriptive measures, you need to create the following derived data type:

<xs:simpleType name=”wbcType”>

<xs:union memberType=”xs:decimal xs:string” />

</xs:simpleType>

Next, we could use this data type to derive a list type based on the union data type:

<xs:simpleType name=”wbcList”>

<xs:list itemType=”wbcType” />

</xs:simpleType>

Deriving a Restricted Data Type
A restricted data type is a restriction placed on the facets of the base type.

For example, an integer data type could be constrained to fall within a range of values.

XML Schema provides twelve constraining facets that can be used to derive new data types. (See the following table).

	Facet
	Description

	enumeration
	Constrains the data type to a specified list of values.

	length
	Specifies the length of the data type in characters (for text strings) or items (for lists)

	maxLength
	Specifies the maximum length of the data type in characters (for text strings) or items (for lists)

	minLength
	Specifies the minimum length of the data type in characters (for text strings) or items (for lists)

	pattern
	Constrains the lexical space of the data type to follow a specific character pattern

	whiteSpace
	Controls the use of blanks in the lexical space of the data type; the whiteSpace facet has three values: preserve (preserve all white space) replace (replace all tabs, carriage returns, and line feed characters with blank spaces) collapse (collapse all consecutive occurrences of white space to a single blank space, remove any leading or trailing white space)

	maxExclusive
	Constrains the data type to be less than a maximum value

	maxInclusive
	Constrains the data type to be less than or equal to a maximum value

	minExclusive
	Constrains the data type to be greater than a minimum value

	minInclusive
	Constrains the data type to be greater than or equal to a minimum value

	fractionDigits
	Specifies the maximum number of decimal places to be right of the decimal point in the data type’s value

	totalDigits
	Specifies the maximum number of decimals in the data type’s value

<xs:simpleType name=”name”>

<xs:restriction base=”type”>

<xs:facet1 value=”value1” />

<xs:facet2 value=”value2” />

</xs:restriction>

</xs:simpleType>

Where type is the data type of the base type; facet1, facet2, etc… are constraining facets; and value1, value2, etc.., are values for each constraining facet.

For example, the age of each patient must be at least 21. The restricted data type would therefore be:

<xs:simpleType name=”ageType”>

<xs:restriction base=”xs:integer”>

<xs:minInclusive value=”21” />

</xs:restriction>

</xs:simpleType>

For example, the following rules are set for the elements and attributes for the patents.xml

· Patients must be at least 21 years of age.
· The stage of the breast cancer must be I or II.

· The performance score must fall between 0 and 1.
· The value of the performance scale attribute must be either “Bell” or “Karnofsky”.

(See patients_3.xml and pschema_3.xsd)
Working with Character Patterns (Regular Expressions)
See page 183.
References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

