XSLT
The details for formatting XML documents was originally in a specification called XSL, which stands for eXtensible Style Language. However, because it was taking so long to finish, the W3C divided XSL into two pieces: XSLT (for Transformations) and XSL-FO (for Formatting Objects).
XSLT is used to transform XML documents. The end result might be another XML document or an HTML document. In reality, you can transform an XML document into practically any document type you like. Transforming an XML document means using XSLT to analyze its contents and then take certain actions depending on what elements are found. You can use XSLT to reorder the output according to specific criteria, display only certain pieces of information, and much more.

XSL-FO is typically used to format XML for print output, such as going directly to a PDF. It is not supported by any browsers, and requires specific parsing software to use. 

Transforming XML with XSLT

Let’s start with an overview of the transformation process. The process starts with two documents, the XML document which contains the source data to be transformed, and the XSLT style sheet document which describes the rules of the transformation. While you can transform XML into nearly any format, we are going to use examples that return HTML.
To perform the actual transformation, you will need an XSLT processor, or a browser that supports XSLT. Most current XML Editor have built-in XSLT support, as do most current Web browsers.
Analyzing the source XML

To begin, you will need to link your XML document to your XSLT style sheet using the xml-stylesheet processing instruction. Then, when you open your XML document in an XSLT processor or a browser, the instruction tells the processor to perform the XSLT transformation before displaying the document.

In the first step of this transformation, the XSLT processor analyze the XML document and converts it into a node tree. A node tree is a hierarchical representation of the XML document. In the tree, a node is one individual piece of the XML document (such as an element, an attribute, or some text content).

Assessing the XSLT style sheet

Once the processor has identified the nodes in the source XML, it then looks to an XSLT style sheet for instructions on what to do with those nodes. Those instructions are contained in templates which are comparable to functions in a programming language.

Each XSLT templates has two parts: first, a label that identifies the nodes in the XML document to which the template applies (select="customer/name"); and second, instructions about the actual transformation that should take place (xsl:value-of). The instructions or rules, will either output or further process the nodes in the source document. They can also contain literal elements that should be output as is (<html><head><title>XSLT sample</title></head>…).
Performing the transformation

The XSLT transformation begins by processing the root template. Every XSLT style sheet must have a root template; this is the template that applies to the source XML document’s root node. The root template is defined with <xsl:template match="/">. Within this root template, there may be other sub-templates which can then apply to other nodes in the XML document.
And the transformation continues until the last instruction of the root template is processed. The transformation document is then either saved to another file, displayed in a browser or both.

NOTE: XSLT style sheets are text files and are saved with an .xsl extension.

XSLT uses the XPath language to identify nodes. XPath Patterns and Expression, and XPath Functions will be discussed later.

XML:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl" href="01_xslt_sample.xsl" ?>

<customer>

  <name>John Smith</name>

  <credit_limit>100000.00</credit_limit>

  <premier>true</premier>

  <active>1</active>

  <customer_since>2000-02-15</customer_since>

</customer>
XSL:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

  <xsl:output method="html" />

  <xsl:template match="/">

    <html><head><title>XSLT sample</title></head>

          <body><h1>XSLT Sample</h1>


  Customer: <xsl:value-of select="customer/name" />


  has credit limit of: 


  <xsl:value-of select="customer/credit_limit" />


  </body></html>

  </xsl:template>

</xsl:stylesheet>

XSLT Style Sheet:

1. Type <?xml version="1.0"?> to indicate that the XSLT style sheet is an XML document.
2. Type <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> to specify the namespace for the style sheet and declare its prefix (xsl).

3. Create the root template.

4. Set the processor’s output method to HTML.

5. Output a node’s content.

6. Finally, type </xsl:stylesheet> to complete the style sheet.

To create the root template:

1. Type <xsl:template.

2. Then, type match="/". The forward slash matches the root node of the XML source document.

3. Next, type > to close the tag.

4. Specifying the rules of the template, that is, what transformation should happen with the XML document.

5. Finally, type </xsl:template> to complete the root template.

To set the processor’s output method to HTML:

1. Immediately after the xsl:stylesheet element, type <xs:output.

2. Then, type method="html" />.

To add HTML to any template’s output:

1. Inside any other template rule, that is, between <xsl:template match="…"> and its matching </xsl:template>, add the HTML that you would like to output when this particular template is applied.

To output a node’s content:

1. If desired, create the HTML code that will format the content.

2. Type <xsl:value-of.

3. Then, type select="expression", where expression identifies the node set from the XML source document whose content should be output at this point. 

4. Finally, type /> to close the tag.

NOTE: You can use select="." to output the content of the current node. 
If the select expression matches more than one node in the XML document, only the first node’s value is output.

If the select expression matches a node, the string value of that node (the text that node contains) is output. If the node has child elements, the output includes the text contained in those child elements as well.

If the select expression matches a node set that is empty, there is nothing to output.

If the select expression evaluates to a number, the number is converted to a string for output.

If the select expression evaluates to a Boolean expression (evaluates to either true or false), the output will be either the text “true” or the text “false”.

SAMPLE XSLT Style Sheet:
<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

  <xsl:output method="html" />

  <xsl:template match="/">

    <html><head><title>XSLT sample</title></head>

          <body><h1>XSLT Sample</h1>


  Customer: <xsl:value-of select="customer/name" />


  has credit limit of: 


  <xsl:value-of select="customer/credit_limit" />


  </body>
    </html>

  </xsl:template>

</xsl:stylesheet>
Looping Over Nodes

The xsl:value-of element will only act on one node, even if there are many nodes that it matches. The xsl:for-each element allows you act on all nodes matched. It processes all the nodes matched by its select attribute, one after the other.
To process all matched nodes:

1. Within a template rule, type <xsl:for-each.

2. Then, type select="expression", where expression identifies the set of nodes that will be processed.

3. Next, type > to close the tag.

4. Specify what processing should take place.

5. Finally, type </xsl:for-each> to complete the instruction.

NOTE: In general, place the xsl:for-each right before the rules that should be repeated for each node found. To add a table or some other container, you would do so before and after the opening and closing tags, respectively.
The xsl:for-each element is often used to create HTML tables. Place the opening and closing <table> tags before and after the <xsl:for-each>. Then, place the <tr> and <td> tags as part of the processing that should take place as described in Step 4 above.
Because an XSLT style sheet is also an XML document itself, when HTML is part of an XSLT file, it must follow XML’s rules. For example, every opening tag must have a matching closing tag and elements may not overlap.

In the select condition of the xsl:for-each element, you can require a specific attribute match by using @[attribute='expression']. 

XSL:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

  <xsl:output method="html" />

  <xsl:template match="/">

    <html><head><title>XSLT Loop Over Nodes</title></head>

          <body><h1>XSLT Loop Over Nodes</h1>


  <table border="1"><tr><th>Name</th><th>Phone</th></tr>


    <xsl:for-each select="contact/friend">


      <tr><td><xsl:value-of select="name" /></td>


      <td><xsl:value-of select="phone" /></td></tr>


    </xsl:for-each>


  </table>


  </body>

    </html>

  </xsl:template>

</xsl:stylesheet>

Processing Nodes Conditionally
It is not common to want to process a node or a set of nodes only if a certain condition is met. The condition is written as an expression.
To process nodes conditionally:

1. Within a template rule, type <xsl:if.

2. Then, type test="expression", where expression specifies a node set, a string, or a number. 

3. Next, type > to close the tag.

4. Specify what should happen if the node set, string, or number specified in Step 2 is not empty (or not equal to zero, in the case of a number).

5. Finally, type </xsl:if> to complete the instruction.

NOTE: When referring to a node set in the expression. The test returns true if the node set is not empty; that is, if it contains at least one node.

If you want to be able to specify an alternate result when the expression is false, e.g. an else condition, use xsl:choose.
The following table describes comparison operators supported by XPath.

	Operator
	Description
	Example

	=
	Tests whether two values are equal to each other
	@symbol ='abc'

	!=
	Tests whether two values are unequal
	@symbol !='abc'

	&lt;
	Tests whether one value is less than another
	@symbol &lt; 'abc'

	&lt;=
	Tests whether one value is less than or equal to another
	@symbol &lt;= 'abc'

	> or &gt;
	Tests whether one value is greater than another
	@symbol > 'abc'

	>= or &gt;=
	Tests whether one value is greater than or equal to another
	@symbol >= 'abc'

	and 
	Combines two expressions, returning a value of true only if both expression are true
	@symbol = 'abc' and @current = 'xyz'

	or 
	Combines two expressions, returning a value of true if either expression is true
	@symbol = 'abc' or @current = 'xyz'

	not
	Negates the value of the expression, changing true to false or false to true
	not(@symbol >= 'abc')


NOTE: Because XML treats the left angle bracket character (<) as the opening character for an element tag, you must use the text string &lt; for less than comparisons. XML does not have a problem with the right angle bracket character (>).

XSL:
  <xsl:template match="/">

    <html><head><title>XSLT Conditional</title></head>

          <body><h1>XSLT Conditional</h1>


  <table border="1"><tr><th>Name</th><th>Phone</th></tr>


    <xsl:for-each select="contact/friend">


      <tr><td><xsl:value-of select="name" /></td>


      <td><xsl:value-of select="phone[@format='dash']" />



  <xsl:if



    test="phone[@format='no_dash']">



    (<span style="background-color: yellow"><xsl:value-of select="phone[@format='no_dash']" />



    </span>)



  </xsl:if>


      </td></tr>


    </xsl:for-each>


  </table>


  </body>

    </html>

  </xsl:template>

Adding Conditional Choices

The xsl:if instruction only allows for one condition and one resulting action. You can use xsl:choose when you want to test for several different conditions, and react accordingly to each one. 

To add conditional choices:

1. Within a template rule, type <xsl:choose>.

2. Type <xsl:when to begin the condition.

3. Then, type test="expression", where expression specifies node set, a string, or a number.

4. Next, type > to close the tag.
5. Specify the processing that should take place if the node set, string, or number tested in Step 3 is not empty (or equal to zero, in the case of numbers).

6. Type <xsl:when> to complete the condition.

7. Repeat Steps 2-6 for each condition.

8. If desired, type <xsl:otherwise>. Specify what should happen if none of the conditions specified by the xsl:when elements are true. Then, type </xsl:otherwise>,

9. Finally, type </xsl:choose> to complete the instruction.

NOTE: In the case of multiple conditions, once a condition is found to be true, all the remaining conditions are ignored (even if there is another true condition). The action contained in this first true condition is the only one performed.
XSL:

<xsl:choose>

  <xsl:when test="name = 'Name 1'">

    <span style="background-color: yellow">NAME 1</span>

  </xsl:when>

  <xsl:when test="name = 'Name 3'">

    <span style="background-color: green">NAME 3</span>

  </xsl:when>

  <xsl:otherwise>

    <xsl:value-of select="name" />

    

  </xsl:otherwise>

</xsl:choose>
Sorting Nodes Before Processing
By default, nodes are processed in the order in which they appear in the XML source document. If you would like to process them in some other order, you can add an xsl:sort element when you use xsl:for-each.

To sort nodes before processing:

1. Directly after an xsl:for-each element type <xsl:sort.

2. Then, type select="criteria", where criteria is an expression that specifies the node (key) on which the source nodes should be sorted.

3. If desired, type order="descending". The default is for nodes to be sorted in ascending order.

4. If desired, then type data-type="text" or data-type="number" depending on what you are sorting. The default is text.

5. Finally, type /> to close the instruction.

6. Repeat Step 1 – 5 to define as many sorting parameters as desired.

NOTE: Be sure to specify the correct data-type in Step 4
XSL:


    <xsl:for-each select="contact/friend">


      <xsl:sort select="name" order="descending" data-type="text" />


      <xsl:sort select="phone" order="ascending" data-type="text" />


      <tr><td><xsl:value-of select="name" /></td>


      <td><xsl:value-of select="phone" /></td></tr>


    </xsl:for-each>
Generating Output Attributes
When you are transforming your XML source document to an HTML, it is often useful to be able to add attributes and values to a given output element. 

To generate output attributes:

1. Directly after the opening tag of the element in which this new attribute should appear, type <xsl:attribute.

2. Then, type name="att_name", where att_name is the name that the attribure should have in the element.

3. Next, type > to close the tag.

4. Specify the value of the new attribute using XSLT instructions or literals.

5. Finally, type </xsl:attribute> to complete the attribute generation.
6. Repeat Steps 1-5 to define as many attributes as desired.

XSL:

<td>

  <xsl:choose>

    <xsl:when test="phone[@format='dash']">

      <xsl:value-of select="phone" />

    </xsl:when>

    <xsl:otherwise>

      <xsl:attribute name="style">

        background-color : yellow; font-size : 30

      </xsl:attribute>

      (<xsl:value-of select="phone" />)

      </xsl:otherwise>
    </xsl:choose>

</td>
Creating and Applying Templates

The root template is the first thing processed in an XSLT style sheet. This template is the set of rules applied to the root node of the XML source document.
XSLT allows you to create more templates than just the root template. This allows you to create different sets of processing rules to apply to different parts of your XML.

To create a template:

1. Type <xsl:template to begin the template.

2. Then, type match="pattern", where pattern identifies the node(s) of the XML document to which the template will be applied. 

3. Next, type > to close the tag.

4. Specify all the transformations that should happen when a node is found that matches the pattern in Step 2.

5. Finally, type </xsl:template> to complete the template.

NOTE: The root template is simply a template with a pattern that matches the root node.

Only the root template is called automatically. All other templates must be applied manually. Otherwise, they are simply ignored.
To apply a template:

1. Within any template, type <xsl:apply-templates.

2. Then, type select="expression", where expression identifies the node(s) of the XML document whose templates should be applied.

3. Finally, type /> to complete the instruction.

NOTE: If you have multiple templates in your style sheet, the order of the xsl:apply-templates elements determines the order in which the templates are processed.

If you don’t specify the select attribute in Step 2 above, the processor will look for and apply a template to each of the current node’s children.

XSL:

  <xsl:template match="/">

    …………

    <xsl:for-each select="contact/friend">


      <tr><td><xsl:value-of select="name" /></td>


      <td><xsl:value-of select="phone[@format='dash']" />



  <xsl:if test="phone[@format='no_dash']">

    



    <xsl:apply-templates select="phone[@format='no_dash']" />



  </xsl:if>


      </td></tr>


    </xsl:for-each>

………….
  </xsl:template>

  <xsl:template match="phone[@format='no_dash']">

    (<span style="background-color: yellow"><xsl:value-of select="." />



    </span>)

    <xsl:value-of select="@format" />

  </xsl:template>

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646  ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

