New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

The History of XSL
One of the challenges of working with an XML document is presenting the XML data in a useful format, particularly for Web users. One method of accomplishing this is by designing a style sheet for the document using CSS. However, CSS has the following limitations:
· CSS displays element content as it appears in the XML document. Although you can apply a style, such as a font size, to content, you cannot change the format of the content itself. For example, you cannot specify that a date entered in an XML document as “June 28, 2008” should be displayed as “6/28/2008”.

· CSS does not allow you to add additional text to element content.

· CSS does not provide easy methods to display images or insert links.

· CSS displays only element content, not element attributes.

· An element can be formatted only one way in a document. For example, you cannot display an element as a heading in one part of the page and as a table cell in another.

In an effort to overcome limitations of CSS and provide a more robust method of displaying XML data, in 1998 the W3C began developing the Extensible Stylesheet Language, or XSL.

XSL allows you to transform your XML data into a variety of formats, including HTML, XHTML, Portable Document Format (PDF), Rich Text Format (RTF), and even a new XML document.

XSL is composed of the following two parts, with each part acting as a separate language:

· XSL-FO (Extensible Stylesheet Language – Formatting Objects) is used for the layout of paginated documents.

· XSLT (Extensible Stylesheet Language Transformation) is used to transform the contents of an XML document into another document format.

XSL-FO is an XML vocabulary that describes the precise layout of text on a page. It supports elements to describe pages, text blocks, horizontal rules, headers, footers, and other page elements. Support for XSL-FO in browsers is very limited at this time.
The most recent version of XSLT released by the W3C is XSLT 1.0. In November 2005, the W3C released a candidate recommendation for XSLT 2.0.

XSLT Style Sheets and Processors
The purpose of XSLT is to transform the contents of an XML document into another output format. The output format can be almost anything, including another XML document, a simple text file, a Web page written in XHTML, or a desktop publishing format like RTF (Rich Text Format), PDF (Portable Document Format), or PostScript.

To employ XSLT, you must create an XSLT style sheet that contains instructions for transforming the contents of an XML document into the document format of your choice. An XSLT style sheet is itself an XML document, with elements, attributes, and processing instructions from the XSLT vocabulary. XSLT style sheet have the filename extension .xsl to distinguish them from other XML documents.

An XSLT style sheet works by translating a source document of XML content into a result document written in the chosen output format. To perform this transformation, you need an XSLT processor that applies the style sheet to the source document to generate the result document. The result document can be a physical document stored in a separate file, or it can be a virtual document that is generated by the XSLT processor and appears to a user only when the processor is running.
Transformations of a source document can be performed on a server or a client. In a server-side transformation, a server receives a request form a client to generate the result document. The server applies the style sheet to the source document and returns the result document to the client, often as a new file. In a server-side transformation, the client does not need an XSLT processor, because all of the work is done on the server. This makes the process more accessible to a wide variety of users who may not have access to an XSLT processor. A disadvantage ot server-side transformations is the heavy load they can place on a server as it attempts to handle transformation requests from multiple clients.
In a client-side transformation, a client requests retrieval of both a source document and a style sheet form the server. The client then performs the transformation and generate its own result document.

There are several client-side XSLT processors available:

· MSXML, a client-side XSLT processor, is available from Microsoft and is included with Internet Explorer 5.0 and later versions.

· TransforMiiX is a client-side XSLT processor built into the Mozilla browser engine and employed by Netscape and Firefox.

· xt is an open source XSLT processor developed by James Clark.
· Saxon is an open source XSLT processor developed by Michael Kay.

· Xalan Apache, an open source component developed by the Apache Software Foundation, is available for both the Java and C++ programming languages. The Macintosh Safari browser does not completely support XSLT 1.0. if you are using Safari, you may have to generate a result document in a separate file.

The XSLT processors built into Web browsers do not generate result documents as separate files; instead, they render a source document using the styles defined in a XSLT style sheet.
NOTE: Most current browsers now support an internal XSLT processor.

Introducing XPath

Nodes and the Node Tree

In XSLT, the content of a source document is organized into nodes, where a node is any of the following:

· The source document itself

· A comment statement

· A processing instruction

· A defined namespace

· An element

· The text contained within an element

· An element attribute

The following are not considered nodes:

· The XML declaration

· A CDATA section

· An entity reference

· A DOCTYPE declaration

Nodes are distinguished based on the objects they refer to in a document. A node for an element is called an element node. A node that stores element attributes is called an attribute node. A text node contains the text within an element. Comment notes and processing instruction nodes store information about the comments and processing instruction in the source document, respectively.
The various nodes are organized into a node tree, with the root node or document node at the top of the tree containing all other nodes. The root node is the node that represents the source document itself; this should not be confused with the root element.

(figure 6-7, page 305)

The relationship between the nodes in a node tree follows a familial structure. A node that contains other nodes is called a parent node, and the nodes contained in a parent node are called child nodes. Nodes that share a common parent are called sibling nodes.
Any node found at a level below another node is referred to as a descendant of that node. The node at the top of the branch is referred to as the ancestor of all nodes that lie beneath it.

Absolute and Relative Location Paths

The different nodes in a node tree can be referenced using XPath, a non-XML language that indicates different paths of an XML document. The most current version of XPath is 1.0. However, a candidate recommendation for XPath 2.0 was released in November 2005 by the W3C.
XPath is used in conjunction with XSLT to indicate which nodes are being processed and sent to the result document. To select a node or a group of nodes from a node tree, an XPath expression defines a location path to the node or nodes. Location paths can be written in either absolute or relative terms.

In describing an absolute path, XPath begins with the root node, identified by a forward slash (/), and proceeds down the levels of the node tree until the selected node is reached. Each level is identified by additional forward slashes,
/child1/child2/child3/…

Where child1, child2, child3, and so forth are the descendants of the root node. For example,
/portfolio/stock/sName

For element nodes, you use the name of the element to identify the node. You can avoid listing all of the levels of a node tree by using a double forward slash (//) with the syntax,

//descendant

Where descendant is the name of the descendant node. For example,

//sName

Refers to all sName elements in the document, no matter where they are located in the node tree.

Note that a location path might point to more than one node in the source document. In such cases, the collection of nodes is referred to as a node set.

An XSLT processor navigates through the node tree as it generates the contents of a result document. The node where the processor is focused at a given moment is called the context node.

In place of an absolute path, you can also reference a node through a relative path that expresses a node’s location relative to the context node. For example, you may want to work with the parent of the context node or the context node’s first child or sibling. The following table describes some of the common relative path expressions in XPath.

	Relative path
	Description

	.
	Refers to the context node

	..
	Refers to the parent of the context node

	child
	Refers to the child of the context node named child

	child1/child2
	Refers to the child2 node, a child of the child1 node beneath the context node

	../sibling
	Refers to a sibling of the context node named sibling

	.//descendant
	Refers to a descendant of the context node named descendant

For example, if the context node is the portfolio element, then the XPath expression

stock/sName

refers to the stock element (the child of the portfolio element) and then to the sName element (the child of the stock element).

Referencing Node Sets

XPath also allows you to refer to a node set using the wildcard character (*).

/portfolio/*

is an absolute reference that matches all of the children of the portfolio element. To select all of the nodes in the node tree,
In this case, the (*) symbol matches any node, and the (//) symbol sets the scope of the search to include all of the descendants of the root node.

XPath allows you to combine different paths into a single expression using the (|) operator.

/portfolio/date | /portfolio/time

matches both the date and time child elements of the portfolio element. Similarly

//sName | //author

selects all of the sName and author node elements in the node tree, regardless of their location.

Referencing Attribute Nodes
The syntax to refer to an attribute node is:

@attribute
Where attribute is the name of the attribute. For example, the sName element has a single attribute named symbol. The absolute reference to this attribute is

/portfolio/stock/sName/@symbol

If the stock element is the context node, then the relative path to the symbol attribute is

sName/@symbol

If the sName element is the context node, then the relative path is

@symbol

To select all symbol attributes in the node tree regardless of their location, you can use the XPath expression

//@symbol

Finally, to select all attribute nodes in the node tree regardless of their location, you combine the asterisk wildcard with the (@) symbol in the following XPath expression

//@*

Referencing Text Nodes
A text node is simply the text content of an element. There are no nodes for character or entity references. If element text contains an entity or character reference, that reference is resolved by an XSLT processor before the text node is created. Thus, there is no way of knowing whether the content of a text node originally contained entity or character references. The syntax to refer to a text node is:

text()

For example, to reference the text contained with the sName element, you can use the absolute path:

/portfolio/stock/sName/text()

Or more generally

//sName/text()

To match all text nodes in the document no matter their location in the node tree, use:

//text()

Referencing Comment and Processing Instruction Nodes

Comments are treated as nodes, and can be referenced using the expression

comment()

For example, if you insert comments at the top of an XML document, those comments can be referenced using the absolute path expression:

/comment()

All of the comments in a document can be referenced using the XPath expression:

//comment()

The node tree includes a processing instruction node for every processing instruction in the source document, except those that occur within a DOCTYPE declaration. (The XML declaration is not treated as a processing instruction node). To reference a processing instruction, you use the XPath expression:

processing-instruction()
Thus, the absolute path to a processing instruction in the source document would be
/processing-instruction()

and you could reference all of the processing instruction in the source document with the expression:

//processing-instruction()

NOTE: There is usually little need for referencing comments or processing instructions in the source document until you get to more advanced XSLT applications.

Introducing XSLT Templates
The basic building block of an XSLT style sheet is the template. A template is a collection of rules that define how a particular collection of nodes in a source document should be transformed in a result document. A template fills the same role that a selector fills in the Cascading Style Sheets language: it indicates which parts of a source document receive the styles defined in the style sheet. The general syntax of an XSLT template is:

<xsl:template match=”node set”>

styles

</xsl:template>

Where node set is an XPath expression that references a node set from the source document and styles are the XSLT styles applied to those nodes. As an XSLT processor moves through the source document’s node tree, it applies these styles when it encounters the nodes defined in the match attributes. The node specified in the match attribute becomes the context node for any location paths used in the template.
The Root Template

The basic template in an XSLT style sheet is the root template, which defines styles for the source document’s root node. Because the root node refers to the source document itself, the root template sets the initial styles for the entire result document.

<xsl:template match=”/”>

styles

</xsl:template>

Note that the location path for the match attribute is set to “/”, matching the XPath expression for the root node. This also makes the root node the context node for all XPath expressions within the template. The root template can be located anywhere between the opening and closing <xsl:stylesheet> tags of the XSLT document. However, it is customary to put the root remplate at the top of the document, directly after the opening <xsl:stylesheet> tag.

Literal Result Elements

A template contains two types of elements: XSLT elements and literal result elements. An XSLT element is any element that is part of the XSLT vocabulary. XSLT elements must be placed within the XSLT namespace, usually with the namespace prefix xsl. XSLT elements contain instructions to the XSLT processor regarding how to interpret the contents of the source document or how to render the contents of the result document.
 A literal result element is any element that is not part of the XSLT vocabulary and that has content to be sent to the result document. A literal result element is not acted upon by the XSLT processor but is treated instead as raw text. For example, any HTML tags in a style sheet are considered a literal result because they are ignored by XSLT processors and sent directly to the result document.

For example, if you want to create a Web page based on the contents of the stock.xml file, here is the HTML code:

<html>

<head><title>Stock Information</title>

<link href="stock.css" rel="stylesheet" type="text/css" />

</head>

<body>

<h1>CCSF Financial</h1>

<h2>Stock Informatiuon</h2>

</body>

</html>
NOTE: an external CSS style sheet named stock.css to format some of the tags of this HTML file.

All of the HTML elements are literal result elements, because they do not involve any of the elements associated with XSLT. Because they are to be placed directly in the result document as text, you need only add the HTML code to the root template as follows:

<xsl:template match="/">

<html>

<head><title>Stock Information</title>

<link href="stock.css" rel="stylesheet" type="text/css" />

</head>

<body>

<h1>CCSF Financial</h1>

<h2>Stock Informatiuon</h2>

</body>

</html>

</xsl:template>
Specifying the Output Method

By default, an XSLT processor renders the result document as an XML file. However, most processors instead create an HTML file if the <html> tag is included as a literal result element in the root template. This is a convention followed by the programmers of XSLT processors, though, and is not part of the XSLT specifications. To ensure complete control over how processors format your source document, you can specify the output method using the XSLT element.

<xsl:output attributes />

Where attributes is the list of attributes that define the output format of the result document.

	Attribute
	Description

	method
	Defines the output format using the value xml, html, or text

	version
	Specifies the version of the output

	encoding
	Specifies the character encoding

	omit-xml-declaration
	Specifies whether to omit an XML declaration in the first line of the result document (yes) or to include it (no)

	standalone
	Specifies whether a standalone attribute should be included in the output and sets its value (yes or no)

	doctype-public
	Sets the URI for the public identifier in the <!DOCTYP> declaration

	doctype-system
	Sets the system identifier in the <!DOCTYPE> declaration

	cdata-section-elements
	Specifies a list of element names whose content should be output in CDATA sections

	indent
	Specifies whether the output should be indented to better display its structure (indentations are automatically added to HTML files without use of this attribute)

	media-type
	Sets the MIME type of the output

For example, to instruct XSLT processors to create HTML 4.0 files, you insert the following tag directly after the opening <xsl:stylesheet> tag:

<xsl:output method="html" version="4.0" />
On the other hand, to use your style sheet to transform one XML document into another, you add the following tag to the stylesheet file:

<xsl:output method="xml" version="1.0" />
Sometimes programmers need only a piece of an XML document, consisting of a few elements or attributes, as a result document. Such a document, called an XML fragment, does not include an opening XML declaration:

<?xml version="1.0" ?>

To remove this declaration from the result document, you use the following open method:

<xsl:output method="xml" version="1.0" omit-xml-declaration="yes" />
Finally, to create a plain text file, the output method is
<xsl:output method="text" />
Text file are used in cases in which the code of the result document follows neither the HTML nor the XML syntax. One format for text files is the Rich Text Format (RTF), which is supported by most word processors. To create an RTF file, you insert code for the RTF file into the style sheet. XSLT processors then pass the code through as text, without checking the document for well-formedness or validity.
You can control the content of the DOCTYPE declaration using the doctype-public and doctype-system attributes. Naturally, this would be applicable only if the result document is an XML file.

Extracting Element Values

To insert a node’s value into the result document, you use the XSLT element:

<xsl:value-of select="expression" />
Where expression is an XPath expression that identifies the node from the source document’s node tree.

For element nodes, the value of the node is the text that the node contains. If the element node contains child elements in addition to text content, the text in those child notes appears as well.

For example, add the following code to stock.xsl
Last Updated:

<xsl:value-of select="portfolio/date" /> at

<xsl:value-of select="portfolio/time" />
NOTE: you may wonder why the XPath expression is “portfolio/date” rather than “/portfolio/date”. This is because you are adding this code to the root template, and as the commands in that template are processed the context node is the root node. Thus, you can use a relative path to the date and time nodes rather than an absolute path.

Next you want to display the stock name as h3 headings:

<h3><xsl:value-of select="portfolio/stock/sName" /></h3>
The first stock name appears in the document, but where are the others? Although the XSLT value-of element does display the node’s value, if there are multiple elements in the source document that match the XPath expression, only the value of the first element appears.
Processing Several Elements

When several nodes in the source document match an XPath expression, you can apply the same style to each item using XSLT’s for-each element.

<xsl:for-each select="expression">

styles
</xsl:for-each>
For example, to display each stock name from the source document as an h3 heading:

<xsl:for-each select="portfolio/stock">

<h3><xsl:value-of select="sName" /></h3>

</xsl:for-each>
As the XSLT processor goes through the source document’s node tree, it stops at each occurrence of a portfolio/stock node and sends the following style to the result document:

<h3><xsl:value-of select="sName" /></h3>

NOTE: the XPath expression in this statement uses a relative path reference to point to the sName element. In this case, the context node is the portfolio/stock node, as that is the node currently being processed in the for-each statement. One of the challenges for new XSLT programmers is to keep track of the context node; assuming an incorrect context node for a given expression is a common source of errors.

Working with Templates

Rather than using the XSLT for-each element, you can create a template for the sName element. An XSLT processor can then apply the template whenever it encounters the sName element in the source document.
Applying a Template
To apply a template, use the apply-templates element with the syntax:
<xsl:apply-templates select="expression" />
Where expression is an XPath expression for a node set in the source document. The XSLT processor then searches the XSLT style sheet for a template matching that node set. The value of the XPath expression depends on the value of the context node. For example, to apply the sName template from within the root template, you set the XPath expression to “portfolio/sName”:

<xsl:template match="/">
<xsl:apply-templates select="portfolio/stock/sName" />
</xsl:template>
In this example, the context node is the root node. However, within a template for the stock element, the apply-templates element uses a different path to reference the sName element:
<xsl:template match="stock">
<xsl:apply-templates select="sName" />

</xsl:template>
In both cases, the XSLT processor searches the node tree of the source document, starting with the context node and working down. If the specified path is repeated several times, the template is applied for each occurrence. This is why templates can be used of the for-each element.

Creating the Stock Template

One of the advantages of using templates instead of the for-each element is that you can break up the nodes of a source document into manageable chunks. A template can also be called from other templates in the style sheet, making it very easy to reuse the same code in different locations in the result document. (See stock_2.xml, stock_2.xsl)
Working with Attribute Nodes

Stocks are identified both by their stock name and their abbreviation or symbol. The symbol is an attribute of the stock element. Recall that attributes are referenced using the expression @attribute, where attribute is the attribute’s name.
<xsl:template match="sName">

<h3>

<xsl:value-of select="." />

(<xsl:value-of select="@symbol" />)

</h3>

</xsl:template>
The stock document also contains attributes that store the daily values of each stock. We can display this data in a table:

<xsl:template match="today">

<table border="2">

<tr><th>Current</th><th>Open</th><th>High</th><th>Low</th><th>Volume</th></tr>

<tr>

<xsl:apply-templates select="@current" />

<xsl:apply-templates select="@open" />

<xsl:apply-templates select="@high" />

<xsl:apply-templates select="@low" />

<xsl:apply-templates select="@vol" />

</tr>

</table>

</xsl:template>
<xsl:template match="@current|@open|@high|@low|@vol">

<td><xsl:value-of select="." /></td>

</xsl:template>
NOTE: the match attribute in the template uses the (|) symbol to apply this template to any of the following attributes: current, open, high, low, or vol.

Using Build-In Templates

So far, you have seen how to create and apply templates to a node from the source document’s node tree. What happens when an XSLT processor encounters a node set that is not associated with a template? In this case, the XSLT processor applies a built-in template to the node. XSLT supports a built-in template for each type of node found in the node tree. For example, the built-in template for element nodes is:

<xsl:template match=”*|/”>

<xsl:apply-templates />

<xsl:template>

This template matches the document root and nodes in the source document’s node tree. Note that no select attribute is given for the apply-templates element. If no select attribute is specified, the XSLT processor locates all of the children of the context node and applies templates to them. The result of this built-in template is that the XSLT processor navigates the entire node tree searching for templates to apply.
Built-In Text Templates

You have noticed that the text contained within an element or attribute is considered a node, but you never wrote a template to display the values of these nodes. Text nodes and the text value of attributes have the following built-in template:

<xsl:template match=”text() | @*”>

<xsl:value-of select=”.”>

</xsl:template>

This template matches all text nodes and attributes and causes their values to appear in the result document. For this built-in template to be involved, the element and attribute nodes from the source document have to be selected with a template written by the programmer. However, once you select an element or attribute node, you can display the text contained within that node without having to write a separate template for the text node.
Built-In Comment and Processing Instruction Templates

By default, the comments and processing instructions in a source document do not appear in the result document. The built-in template for these nodes is:
<xsl:template match=”comment() | processing-instruction()” />

Because this template does nothing, no values are sent to the result document. Note that this template element appears in a one-sided tag because it contains no content.

Inserting Attribute Values
An element’s attribute value can be written using the syntax:
<elem attribute=”{expression}”>

Where elem is the name of the element, attribute is the name of the element’s attribute, and expression is an XPath expression that defines the value of the attribute. For example, to insert the address of the link, you add the “a element” and href attribute to the sName template as follows: (stock_3.xsl)

<xsl:template match="sName">

<h3>

<xsl:value-of select="." />

(<xsl:value-of select="@symbol" />)

</h3>

</xsl:template>
The value of the expression in this case is the XPath expression “../link”, which points to the sibling of the sName element. An XSLT processor uses the value of this element as the value for the link’s target.

Sorting Node Sets
By default, node sets are processed in document order, the order in which they appear in the document. To specify a different order, you can use XSLT’s sort element. This element can be used with either the apply-templates element or the for-each element to specify the order in which the nodes are processed and send to the result document. The general form is:

<xsl:apply-templates select=”expression”>

<xsl:sort attributes />

<xsl:apply-templates>

With the for-each element the general form is:

<xsl:for-each select=”expression”>

<xsl:sort attributes />

</xsl:for-each>

NOTE: when you sort with the apply-templates element, the element tag changes from a one-sided tag into a two-sided tag. The sort element contains several attributes to control how XSLT processors sort the nodes in the source document. The syntax of the sort element is:
<xsl:sort select=”expression” data-type=”type” order=”type” case-order=”type” />

Where the select attribute determines the criteria under which the context node is sorted, the data-type attribute indicates the type of data (text, number, or qname), the order attribute indicates the direction of the sorting (ascending or descending), and the case-order attribute indicates how to handle the sorting of uppercase and lowercase letters (upper-first or lower-first). By default, the sort element assurance that the data is in text form and that it should be sorted in ascending alphabetical order.

For example, if you wanted to sort the stocks by stock name, you use the following code in the root template: (see stock_3.xsl)

<xsl:apply-templates select="portfolio/stock">

<xsl:sort select="category" data-type="number" order="descending" />

<xsl:sort select="sName" />

</xsl:apply-templates>
Or equivalently with the for-each element: (see stock_4.xsl)

<xsl:for-each select="portfolio/stock">

<xsl:sort select="sName" order="descending" />

<h3><xsl:value-of select="sName" /></h3>

</xsl:for-each>
If you don’t include the select attribute, XSLT processors assume that you want to sort the values of the context node. Thus, the following code can also be used to sort the stocks by stock name:

<xsl:for-each select="portfolio/stock/sName">

<xsl:sort />

</xsl:for-each>
To sort in descending order, add the order attribute to the sort element as follows:

<xsl:sort select="sName" order="descending" />

NOTE: it is important to be cautious when using the sort element with numeric value. By default, element content is treated as text. To sort numerically, you must include the data-type attributre. For numeric data, set the value of the data-type attribute to number:

<xsl:sort select="expression" data-type="number" />

If you need to sort by more than one factor, you must place one sort element after another. For example, to sort the stocks first by category and then by the stock name within each category, you enter the following code into the root templates:

<xsl:apply-templates select="portfolio/stock">

<xsl:sort select="category" data-type="number" order="descending" />

<xsl:sort select="sName" />

</xsl:apply-templates>
NOTE: there is no date date-type in XPath 1.0 (dates will be added to XPath 2.0).

Defining Conditional Nodes
XSLT supports two kinds of conditional elements: if and choose.
Using the if Element

The syntax for the if element is:

<xsl:if test="expression">

styles

</xsl:if>

Where expression is an XPath expression that is either true or false. If the expression is true, the XSLT style commands are generated by the processor; otherwise, nothing is done.

For example, the following code displays the text only if the value of the symbol attribute is equal to ‘AMR’: (see stock_5.xsl)

<xsl:if test="../sName/@symbol = 'AMR'">

<div style="color: red">American Airlines</div>
</xsl:if>
NOTE: the text string must be enclosed in either double or single quotes. As with other aspects of XML, comparisons are case sensitive. Be careful when comparing node sets and single values. When multiple values are involved, the expression is true if any of the values in the node set satisfy the test condition.

For example, the XPath expression, which will return a value set:
/portfolio/stock/sName/@symbol = ‘AMR’

is true as long as there is at least one symbol attribute in the node set that is equal to ‘AMR’.

<xsl:if test="/portfolio/stock/sName/@symbol = 'AMR'">

<div style="color: red">American Airlines</div>
</xsl:if>
Using the choose Element

XSLT does not support an else-if construction. This means that the if element tests for only one condition and allows for only one outcome. If you want to test for multiple conditions and display different outcomes, you need to use the choose element. The syntax of the choose element is:

<xsl:choose>

 <xsl:when test="expression1">

stypes
</xsl:when>
<xsl:when test="expression1">

styles
</xsl:when>
…

<xsl:otherwise>

styles

</xsl:otherwise>

</xsl:choose>

Where expression1, expression2, … and so forth are expressions that are either true or false. XSLT processors proceed through the list of when elements one at a time. When they encounter an expression that is true, they process the corresponding style and ignore the rest of the when elements. If no expressions are true, the style contained in the otherwise element is processed.
Using Comparison Operators and Functions

Comparison operator can be used to compare one value to another. Comparisons can be made between numbers, text strings, attribute nodes, element nodes, or text nodes. The following table describes other comparison operators supported by XPath.

	Operator
	Description
	Example

	=
	Tests whether two values are equal to each other
	@symbol = “AA”

	!=
	Tests whether two values are unequal
	@symbol != “AA”

	<
	Tests whether one value is less than another
	@current < @open

	<=
	Tests whether one value is less than or equal to another
	@current <= @open

	>
	Tests whether one value is greater than another
	@current > @open

	>=
	Tests whether one value is greater than or equal to another
	@current >= @open

	and
	Combines two expressions, returning a value of true only if both expressions are true
	@symbol = “AA” and @current > @open

	or
	Combines two expressions, returning a value of true if either expression is true
	@symbol = “AA” or @symbol = “EK”

	not
	Negates the value of the expression, changing true to false or false to true
	not(@current >= @open)

Because XML treats the left angle bracket character (<) as the opening character for an element tag, you must use the text string < for less-than comparisons. XML does not have a problem with the right angle bracket character (>). As a result, one way to avoid using the < expression is to reverse the order of a comparison. For example,

@current < @open

Instead, you write:

@open > @current

(see stock6.xsl)

<xsl:choose>

 <xsl:when test="@current < @open">

<div style="color: red">

<xsl:value-of select="@current" />

</div>

 </xsl:when>

 <xsl:when test="@current > @open">

<div style="color: blue">

<xsl:value-of select="@current" />

</div>

 </xsl:when>

 <xsl:otherwise>

<div style="color: black">

<xsl:value-of select="@current" />

</div>

 </xsl:otherwise>

</xsl:choose>

