XPath Patterns and Expressions
When you create a template, you use a pattern to specify the nodes that the template can be applied to. When you apply a template, you use an expression to specify the node set that should be processed. You write both patterns and expressions using XML Path Language (XPath) syntax.
XPath is a language for selecting nodes and node sets by specifying their location paths in the XML document.

You can also use XPath in other XSLT instructions to further process given node sets to return values instead of nodes. XPath has built-in functions to do math, process strings, and test conditions in an XML document.

Locating Nodes
At the foundation of the XPath language is the ability to use location paths to refer to a node or node set. Remember that a node is an individual piece of the XML document (such as an element, an attribute, or some text content). A location path uses relationships to describe the location of a node or set of nodes relative to a given node. When translating location paths, XPath considers all XML documents as tree structures. Specifically, they are considered node trees, which are a hierarchical structure of nodes.

Location Paths

There are two kinds of location paths: relative location paths and absolute location paths.

A relative location path consists of a sequence of location steps separated by / (a forward slash). Each step selects a node or node set relative to the current node. Then, each node in that set is used as the current node for the following step, and so on.

An absolute location path consists of / (a forward slash), optionally followed by a relative location path. A / by itself selects the root node of the XML document.
Using Located Nodes

Often, when using location paths, you will be using the located node or node set as a container of other elements to process.

Other times, you will want to know the node’s value. In XPath, there are seven different node types: root nodes (in which there is always exactly one), element nodes, text nodes, attribute nodes, comment nodes, processing instruction nodes, and namespace nodes.
NOTE: The current node is the element, or node, that is currently being processed.
Determining the Current Node
As the XSLT processor goes through your style sheet, it works on one node at a time. It is through the use of the xsl:template, xsl:apply-templates, and xsl:for-each elements that it knows which parts of your XML document to process and when.
When developing an XSLT style sheet, you will often specify what to process next with respect to what is being processed now. The node current being processed is called current node. Before you can refer from the current node, you will need to know how to identify it.
To determine the current node:

1. By default, the current node is the one that is specified by the current template. In other words, the current node is identified by the template’s match attribute.

2. If there is an xsl:apply-templates instruction, the current node becomes the node that is matched by the corresponding template (that is, the one specified in the match attribute of the xsl:template instruction). When the processor “returns” from that xsl:template, the current node reverts back to one from the original template’s match attribute.

3. If there is an xsl:for-each instruction, the current node changes to the one specified by its select attribute. After the xsl:for-each instruction, the current node reverts back to whatever it was before that instruction was processed.

NOTE: The xsl:apply-templates instruction may process more than one node in the case where the select expression returns a node set. In this case, each of the nodes in the set will be the current node in turn.

Referring to the Current Node
If you are currently processing the node that you want to use in a select attribute, there is a shortcut you can use. Instead of referring the current node using a location path from the root node, it is much easier to use the current node shortcut.

To refer to the current node:

1. In a location path, type . (a single period).

Selecting a Node’s Children

If the current node contains element(s) that you want to use, you can use a shortcut to refer to these child nodes. Instead of writing the location path from the root node, you can refer to the desired child nodes simply by using their name.

To get a node’s children:
1. Make sure you know what the current node is, and that the node or node set you are interested in is a child of the current node.
2. Then, in the desired location path, type child_name to refer to the name of the child_name element(s) within the current node.

3. If desired, you could then add /grandchild_name to refer to a node or node set contained in the child set reference in Step 2. This enables you to dig deeper into the XML tree and reference node sets further down.

4. Repeat Step 3 until you get to the node(s) at the level you want.

NOTE: Before you ask for children, it is important to know which is the current node.

Type * (an asterisk) to select all the current node’s children.

The xsl:text element is used to add literal text to the output. xsl:text cannot contain any other elements. It is often used to handle special characters such as & or >, or to control white space. To add a space, <xsl:text> </xsl:text>.
Selecting a Node’s Parent or Siblings

If the relationship between the current node and the desired node is quite clear. It is much easier to use a shortcut than to write the complete, absolute relationship starting from the root node.

To select a node’s parent:

1. Make sure you know what the current node is, and that the node set you are interested in is the parent of the current node.

2. Type .. (two periods) to select the current node’s parent.

To select a node’s siblings:

1. After you have gotten to the node’s parent in Step 2 above, type /sibling_name, where sibling_name refers to the name of the desired node. This sibling is therefore, a child of the current node’s parent, but isn’t the current node itself.

2. If desired, type /niece_name, where niece_name refers to a node that is the child of the sibling of the current node.

3. Repeat Step 2 as necessary to select grand_nieces, etc.

NOTE: The .. is often combined with a node’s attribute to find the attribute of the parent node (../@attribute_name).
You can also use an asterisk as a wildcard within a location path. For example, ../* would select all the child elements of the parent of the current node, including the current node itself.

Selecting a Node’s Attributes

If you want the location path to return a node’s attributes rather than the node itself, you can use the @ to specify that you want the attribute returned.
To select a node’s attribute(s):

1. Write the location path to the node, using the techniques described before.

2. Then, type /@ to indicate that you are interested in the current node’s attributes.

3. Finally, type attribute_name, to specify the name of the attribute you are interested in. Or type * (an asterisk) as a wildcard to select all the node’s attributes.

NOTE: The @ symbol is sometimes referred to as the attribute axis. In XPath, an axis is a set of nodes relative to the current node. In addition to the attribute axis, there are 12 other axes defined in the XPath language. They are: ancestor, ancestor-or-self, child, descendant, descendant-or-self, following, following-sibling, namespace, parent, preceding, preceding-sibling, and self. Each of these additional axes specifies a “direction” relative to the current node and represents the corresponding node set. Because each of these axes can be represented by shortcuts, the axes themselves are seldom used in practice.
Conditionally Selecting Nodes

With XPath, you can create Boolean expressions (called predicates) to test a condition and based on the results of that test, select a specific subset of the node set.

Predicates can compare values, test for existence, do math, and more. You use functions to write these and more complicated conditions.

To conditionally select nodes:

1. Create a location path to the node that contains the desired subset.
2. Type [(a left square bracket; to the right of the p on the keyboard).

3. Write the expression that identifies the subset.

4. Finally, type] (a right square bracket) to completes the predicate.

e.g. <xsl:value-of select="phone[@format='dash']" />
NOTE: Predicates are not only for comparisons. It is enough to write [@language], which would select all the current node’s elements that have a language attribute (regardless of its value).

You can use multiple predicates to further narrow your search. Name[@language='English'][position()=last()] would select the name elements that have a language attribute equal to “English” and that are the last node in the set.
You can also add an attribute selector after the predicate, if desired. For example, to get all the attributes of the last element of the current node set, type [last()]/@*.

Make sure you type square brackets; not curly ones or parentheses.

Creating Absolute Location Paths

You can also create absolute location paths, ones that do not rely on the current node. To do so, begin by writing the path to the desired node starting at the root node.
To create an absolute location path:

1. Type / to indicate that you are starting at the root node of the XML document.

2. Then type root, where root refers to the root element of your XML document.

3. Next, type / to go down one level in your XML document’s tree hierarchy.

4. Type container, where container identifies the name of the element on the next level that contains the desired element.

5. Repeat Step 3-4 until you have come to the parent of the node in which you are interested.

6. Finally, type / element, where element is the name of the desired node.

7. Now, you may also use a predicate, or select the node’s attribute, or both.
NOTE: At any point in the location path, you can use * (an asterisk) to specify all the elements at that level

Selecting All the Descendant’s

The // (double forward slash) comes in handy when you need to select all the descendants of a particular node. You can use it either in an absolute or relative location path.
To select all the descendants of the root node:

· Type // (two forward slashes).
To select all the descendants of the current node:

· Type .// (a period followed by two forward slashes).

To select all the descendants of any node:

1. Use the techniques in the previous pages to get to the node whose descendants you are interested in.

2. Then, type // (two forward slashes).

To select some of the descendants of any node:

1. Create the path to the node whose descendants you are interested in by using the techniques described on earlier pages.

2. Type //.

3. Then, type the name of the descendant elements that you are interested in.

NOTE: To get a node when you don’t know (or don’t care) where it is in the document, you can use the following technique. An expression like //element_name will output all the matching elements in the document whose name is element_name, wherever they may be.

References:

New Perspectives on XML, Comprehensive, 2nd Edition, by Patrick Carey. ISBN-10: 1418860646 ISBN-13: 9781418860646

XML: Visual QuickStart Guide, 2nd Edition, by Kevin Howard Goldberg, Peachpit Press, ISBN 0321559673.

Beginning XML, 4th Edition, by David Hunter, Jeff Rafter, Joe Fawcett, Eric Van der Vlist, Danny Ayers, Jon Duckett, Andrew Watt, Linda Mckinnon, Wiley Publishing, ISBN 0470114878.

Learning XML, 2nd Edition, by Erik Ray, O’Reilly Media, ISBN 978-0-596-00420-0

