Capability detection/Capability testing/feature detection/object detection

http://dev.opera.com/articles/view/using-capability-detection/
Why Capability detection?

Browser name sniffing, using scripts figure out which browser is used and then provide different content to them, is a widespread practice with a long history. Unfortunately these scripts are usually static, while browsers keep evolving.

This makes these scripts extremely fragile whenever an unexpected new browser or a new version happens to load the page. Simply put: Sniffing browser names can seriously damage the future health of your script.

How does Capability detection work?

The goal is after all detecting the capabilities of the browser that shows your page - so rather than looking at browser names and versions we should dive right into capability or feature detection!

JavaScript has several built-in features that let you check how things work - without looking at browser names at all. If we think in terms of capability detection, it turns out to be relatively simple to avoid browser sniffing.

To use capability detection, start by getting an overview of which features are required for your script. Then you can use object detection to check if the features exist. I recommend that you also try calling a few selected functions to verify as in-depth as possible that the feature really exists in the visiting browser.

Proper feature detection

How not to do it

Do not check for one object and assume others are available. For instance, it is common to check for document.all and assume your visitor uses IE and all IE-proprietary functions can be used.

How to do it

1. Document what you need

2. Look for selected API functions from features that your script depends on

3. Don't take shortcuts

4. Check if they work by using them on a known element/feature

Example

DOM support

A major site uses the following function to check if the browser has advanced DOM support:

 var isDOM = false;

 if (document.getElementById &&

 document.getElementById("myId")) {

 if (document.getElementById("myId").cloneNode &&

 document.getElementById("myId").cloneNode(true)) {

 isDOM = true;

 }

 }
Note how they check whether functions are available with if(document.getElementById), then proceed to actually calling that function and finally test if the browser supports the fairly advanced W3C DOM compatible cloneNode method.

Some features are not so straightforward to test, but with some creativity very few things are outright impossible. For instance, if you wanted to test if the browser supported try .. catch blocks you could include a separate JavaScript file or SCRIPT tag with the following code:

var trycatchsupported = false;

eval('try{trycatchsupported = true;}catch(e){}');
It needs to be in a separate tag or at the end of a script if you want to prevent syntax errors caused by the try .. catch from stopping your main script.

