PHP Looping
Looping statements in PHP are used to execute the same block of code a specified number of times.
In PHP we have the following looping statements:
· while: loops through a block of code if and as a specified condition is true.
· do…while: loops through a block of code once, and then repeats the loop as long as a special condition is true.
· for: loops through a block of code a specified number of times.
· foreach: loops through a block of code for each element in a array.

The while Statement
The while statement will execute a block of code if and as long as a condition is true.

Syntax
	while (condition) {
 code to be executed;
}

The following example demonstrates a loop that will continue to run as long as the variable i is less than, or equal 5.
	<html>
<body>
<?php
$i = 1;
while ($i <= 5) {
 echo "The number is " . $i . "
";
 $i++;
}
?>
</body>
</html>

The do…while Statement
The do…while statement will execute a block of code at least once – it then will repeat the loop as long as a condition is true.

Syntax
	do {
 code to be executed;
} while (condition);

	<html>
<body>
<?php
$i = 1;
do {
 echo "The number is " . $i . "
";
 $i++;
} while ($i <= 5);
?>
</body>
</html>

The for Statement
The for statement is used when you know how many times you want to execute a statement or a list of statements.
Syntax
	for (initialization; condition; increment) {
 code to be executed;
}

	<html>
<body>
<?php
for ($i =1; $i <= 5; $i++) {
 echo "The number is " . $i . "
";
}
?>
</body>
</html>

The foreach Statement
The foreach statement is used to loop through arrays.
For every loop, the value of the current array element is assigned to $value (and the array pointer is moved by one) – so on the next loop, you will be looking at the next element.

Syntax
	foreach ($array as $value) {
 code to be executed;
}

The following example demonstrates a loop that will print the value of the given array:
	<html>
<body>
<?php
$arr = array("one", "two", "three", "four", "five");
foreach ($arr as $value) {
 echo "Value: " . $value . "
";
}
?>
</body>
</html>

PHP Functions
A function is a block of code that can be executed whenever we need it.
NOTE: in PHP, there are more than 700 built-in functions available.
Creating PHP function:
· All functions start with the word "function()"
· Name the function – it should be possible to understand what the function does by its name. (The name can start with a letter or underscore (not a number).
· Add a "{" – the function code starts with the opening curly brace
· Insert the function code
· Add a "}" – the function is finished by a closing curly brace.
	<html>
<body>
<?php
function HelloWorld() {
 echo "Hello World! ";
}
HelloWorld();
?>
</body>
</html>

The output of the code above will be:
	Hello World!

PHP Functions – Adding parameters
We can add parameters to a function. A parameter is just like a variable.
(The parameters are specified inside the parentheses. If you have more than one parameter, use comma as a separator)
	<html>
<body>
<?php
function HelloWorld_with_Name($MyName) {
 echo "Hello World! " . " My name is " . $MyName;
}
HelloWorld_with_Name("John Smith");
?>
</body>
</html>

The output of the code above will be:
	Hello World! My name is John Smith

PHP Functions – Return values
Functions can also be used to return values.
	<html>
<body>
<?php
function add($x, $y) {
 $total = $x + $y;
 return $total;
}
echo "1 + 16 = " . add(1, 16)
?>
</body>
</html>

The output of the code above will be:
	1 + 16 = 17

References:
a). Copied from http://www.w3schools.com/php/default.asp

