Chapter 2 Designing Databases
Steps to follow when you design a database:

1. Investigate and think about the information environment you’re modeling. Where will the information come from and in what form? How will it be entered into the system and by whom? How frequently will it change? What is most critical in terms of response time and availability?

2. Make a list of the entities, along with their properties or attributes. The entities are likely to wind up being tables; the properties are likely to be columns in those tables.

3. Use entity-relationship (E-R) diagrams.

4. Make sure that each entity has an attribute that you can use to uniquely identify any row in the future table. This unique identifier is often called the primary key.

5. Consider the relationships between the entities. Are they one-to-many or many-to-many? Do you have ways to join the data in one proposed table to that in other related tables? Foreign keys.

6. Analyze your tables according to the normalization guidelines.

7. Ready to create your tables.

Entity-relationship Diagram (E-R):

Entity: is a “thing” about which information will be stored in the database system.

Relationships:

One-to-one: employee and employee number. One employee can have one employee number.

One-to-many: department and employee. One department number can have many employees.

Many-to-many: student and course. One student can take several courses, one course can be signed up by several students. (create student-course to resolve this).

Normalization:

First Normal Form (1NF):

First normal form requires that at each row-and-column intersection, there must be one and only one value, and that value must be atomic: there can be no repeating groups in a table that satisfies first normal form.

Second Normal Form (2NF):

The second normal form requires that every nonkey column must depend on the entire primary key. Therefore, a table must not contain a nonkey column that pertains to only part of a composite primary key. Putting a table into second normal form requires making sure that all the non primary key columns relate to the entire primary key and not just to one of its components.

Third Normal Form (3NF):

Third normal form requires that no nonkey column depend on another nonkey column. Each nonkey column must be a fact about the primary key column.

Relational Algebra:

	Operation
	Type
	Resulting relation

	Union
	Binary
	Rows from the two relations are combined, eliminating duplicate rows.

	Intersection
	Binary
	Rows common to two relations.

	Difference
	Binary
	Rows that exist in the first relation but not in the second.

	Projection
	Unary
	Rows that contain some of the columns from the source relation.

	Selection
	Unary
	Rows from the source relation that meet query criteria.

	Product
	Binary
	Concatenation of every row in one relation with every row in another.

	Join
	Binary
	Concatenation of rows from one relation and related rows from another.

Degree of a Relation: the number of domains or attributes, whose values are used in a set.

Set A1 = { 1,3,5} is of degree of 3

Set A2 = {1,3,5,7, 99} is of degree of 5.

Union Compatibility Rule: two sets are union compatible if they have the same degrees and the ith attribute of the two relations are from the same domain. UNION, INTERSECTION, and DIFFERENCE operations require this characteristic between the two sets.

A1 = {1,3,4}

B1 = {2,1}

Union operate:

If A1 and B1 are two relations, A1 UNION B1 is the set of all tuples belonging to either A1 or B1 or both.

A1 U B1 = {1,3,4,2}

Intersection operation:

If A1 and B1 are two relations, A1 INTERSECT B1 is the set of all tuples belonging to both A1 and B1.

A1 I B1 = {1}

Different Operation:

If A1 and B1 are two relations, A1 DIFFERENCE (or MINUS) B1 is the set of all tuples belonging to A1 and not B1.

A1 – B1 = {3,4}

Cartesian Product:

If A1 and B1 are two relations, A1 PRODUCT B1 is the set of all tuple pairs in A1 and B1.

A1 x B1 = {1 2, 1 1, 3 2, 3 1, 4 2, 4 1}

Selection Operation:

The selection operation on a relation results into a horizontal subset of that relation.

Projection Operation:

The projection operation results in a ‘vertical’ subset of a given relation, by selecting specified attributes (columns).

Join Operation:

A join is defined as a subset of the Cartesian product of two tables where subset is determined by applying a join predicate. If we omit the join predicate, all the possible combinations are returned.

