MySQL 5.7
http://dev.mysql.com/doc/refman/5.7/en/introduction.html
Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql and, most likely, a password. If the server runs on a machine other than the one where you log in, you will also need to specify a host name.
shell> mysql -h host -u user -p
Enter password: ********
host and user represent the host name where your MySQL server is running and the user name of your MySQL account. Substitute appropriate values for your setup. The ******** represents your password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25338 to server version: 5.7.2-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the following:

shell> mysql -u user -p
After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate this by the mysql> prompt.

Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in itself select any database to work with, but that is okay. At this point, it is more important to find out a little about how to issue queries than to jump right in creating tables, loading data into them, and retrieving data from them. This section describes the basic principles of entering commands, using several queries you can try out to familiarize yourself with how mysql works.

Here is a simple command that asks the server to tell you its version number and the current date. Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+

| VERSION() | CURRENT_DATE |

+--------------+--------------+

| 5.7.1-m4-log | 2012-12-25 |

+--------------+--------------+

1 row in set (0.01 sec)

mysql>

This query illustrates several things about mysql:

· A command normally consists of an SQL statement followed by a semicolon. (There are some exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

· When you issue a command, mysql sends it to the server for execution and displays the results, then prints another mysql> prompt to indicate that it is ready for another command.

· mysql displays query output in tabular form (rows and columns). The first row contains labels for the columns. The rows following are the query results. Normally, column labels are the names of the columns you fetch from database tables. If you're retrieving the value of an expression rather than a table column (as in the example just shown), mysql labels the column using the expression itself.

· mysql shows how many rows were returned and how long the query took to execute, which gives you a rough idea of server performance. These values are imprecise because they represent wall clock time (not CPU or machine time), and because they are affected by factors such as server load and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;
Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+

| SIN(PI()/4) | (4+1)*5 |

+------------------+---------+

| 0.70710678118655 | 25 |

+------------------+---------+

1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+

| VERSION() |

+--------------+

| 5.6.1-m4-log |

+--------------+

1 row in set (0.00 sec)

+---------------------+

| NOW() |

+---------------------+

| 2010-08-06 12:17:13 |

+---------------------+

1 row in set (0.00 sec)

A command need not be given all on a single line, so lengthy commands that require several lines are not a problem. mysql determines where your statement ends by looking for the terminating semicolon, not by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+

| USER() | CURRENT_DATE |

+---------------+--------------+

| jon@localhost | 2010-08-06 |

+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing \c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about the state that mysql is in.

	Prompt
	Meaning

	mysql>
	Ready for new command.

	->
	Waiting for next line of multiple-line command.

	'>
	Waiting for next line, waiting for completion of a string that began with a single quote (“'”).

	">
	Waiting for next line, waiting for completion of a string that began with a double quote (“"”).

	`>
	Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).

	/*>
	Waiting for next line, waiting for completion of a comment that began with /*.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit there for a while before realizing what you need to do. Enter a semicolon to complete the statement, and mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+

| USER() |

+---------------+

| jon@localhost |

+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a “'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type \c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an unterminated string, any further lines you type appear to be ignored by mysql—including a line containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating quote before you can cancel the current command.

Creating and Using a Database

Once you know how to enter commands, you are ready to access a database.

This section shows you how to perform the following operations:

· Create a database

· Create a table

· Load data into the table

· Retrieve data from the table in various ways

· Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which a similar type of database might be used. For example, a database like this could be used by a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie distribution containing some of the queries and sample data used in the following sections can be obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+

| Database |

+----------+

| mysql |

| test |

| tmp |

+----------+

The mysql database describes user access privileges. The test database often is available as a workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not show databases that you have no privileges for if you do not have the SHOW DATABASES privilege.
If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you create in that database can be removed by anyone else with access to it. For this reason, you should probably ask your MySQL administrator for permission to use a database of your own. Suppose that you want to call yours menagerie. The administrator needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';
where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host from which you connect to the server.

Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;
Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true for table names. (Under Windows, this restriction does not apply, although you must refer to databases and tables using the same lettercase throughout a given query. However, for a variety of reasons, the recommended best practice is always to use the same lettercase that was used when the database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied for user 'monty'@'localhost' to database 'menagerie' when attempting to create a database, this means that your user account does not have the necessary privileges to do so. Discuss this with the administrator.
Creating a database does not select it for use; you must do that explicitly. To make menagerie the current database, use this command:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select the database on the command line when you invoke mysql. Just specify its name after any connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********
Important

menagerie in the command just shown is not your password. If you want to supply your password on the command line after the -p option, you must do so with no intervening space (for example, as -pmypassword, not as -p mypassword). However, putting your password on the command line is not recommended, because doing so exposes it to snooping by other users logged in on your machine.

Note

You can see at any time which database is currently selected using SELECT DATABASE().

Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and it should contain, as a bare minimum, each animal's name. Because the name by itself is not very interesting, the table should contain other information. For example, if more than one person in your family keeps pets, you might want to list each animal's owner. You might also want to record some basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes as time passes, which means you'd have to update your records often. Instead, it is better to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as the difference between the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

· You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you think this type of query is somewhat silly, note that it is the same question you might ask in the context of a business database to identify clients to whom you need to send out birthday greetings in the current week or month, for that computer-assisted personal touch.)

· You can calculate age in relation to dates other than the current date. For example, if you store death date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);
VARCHAR is a good choice for the name, owner, and species columns because the column values vary in length. The lengths in those column definitions need not all be the same, and need not be 20. You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+

| Tables in menagerie |

+---------------------+

| pet |

+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+-------------+------+-----+---------+-------+

| name | varchar(20) | YES | | NULL | |

| owner | varchar(20) | YES | | NULL | |

| species | varchar(20) | YES | | NULL | |

| sex | char(1) | YES | | NULL | |

| birth | date | YES | | NULL | |

| death | date | YES | | NULL | |

+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what types they have.

For more information about MySQL data types, see MySQL document, Chapter 11, Data Types.

Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in 'YYYY-MM-DD' format; this may be different from what you are used to.)

	name
	owner
	species
	sex
	birth
	death

	Fluffy
	Harold
	cat
	f
	1993-02-04
	

	Claws
	Gwen
	cat
	m
	1994-03-17
	

	Buffy
	Harold
	dog
	f
	1989-05-13
	

	Fang
	Benny
	dog
	m
	1990-08-27
	

	Bowser
	Diane
	dog
	m
	1979-08-31
	1995-07-29

	Chirpy
	Gwen
	bird
	f
	1998-09-11
	

	Whistler
	Gwen
	bird
	
	1997-12-09
	

	Slim
	Benny
	snake
	m
	1996-04-29
	

Because you are beginning with an empty table, an easy way to populate it is to create a text file containing a row for each of your animals, then load the contents of the file into the table with a single statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and given in the order in which the columns were listed in the CREATE TABLE statement. For missing values (such as unknown sexes or death dates for animals that are still living), you can use NULL values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;
If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 -> LINES TERMINATED BY '\r\n';
(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form, you supply values for each column, in the order in which the columns were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
 -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);
String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your records initially using several INSERT statements rather than a single LOAD DATA statement.

Create New User using MySQL Monitor

a) Logon to MySQL using root/mypass

a. Open command screen from Windows

b. Go to c:/xampp/mysql/bin

c. Enter:

mysql –h localhost –u root –p

Password: mypass

b) Once you have the mysql> prompt, enter

mysql>GRANT all/select, update, insert, delete, create table, drop table

--> ON *.*/mydb.*/mydb.tbl

--> TO shoppingcart@localhost

--> IDENTIFIED BY 'shoppingcart';

c) Logoff as root (quit or \q or exit or cntrl c)
Create Database using MySQL Monitor

a) Logon as shoppingcart/shoppingcart
b) Check existing Database

mysql>show databases;

c) Create shoppingcart Database by issuing the command

mysql>CREATE DATABASE shoppingcart;

Use Database and Create Table using MySQL Monitor

a) Use Database shoppingcart:
mysql>use shoppingcart;

b) Create table emp

mysql>CREATE TABLE emp (empno INT(4) PRIMARY KEY,

--> ename VARCHAR(10),

--> job VARCHAR(9),

--> mgr INT(4),

--> hiredate DATE,

--> sal DECIMAL(7,2),

--> comm DECIMAL(7,2),

--> deptno INT(2)

-->);

c) To see the structure of the table:

mysql>describe emp;

(or desc)

d) Create table dept

mysql>CREATE TABLE dept (deptno INT(2) PRIMARY KEY,

--> dname VARCHAR(14),

--> loc VARCHAR(13)

-->);
e) Insert data into emp table

mysql>INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, comm, daptno)

--> VALUES (1234, 'ename', 'mgr', 0000, '1981-01-01', 5000, NULL, 10);

f) Insert multiple rows to emp table

mysql>INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, comm, daptno)

--> VALUES (2345, 'ename2', 'clerk', 1234, '1981-02-01', 2000, NULL, 10),

--> (3456, 'ename3', 'clerk', 1234, '1981-02-01', 2000, NULL, 10);

g) Insert multiple data using LOAD

a. Create a text file in c:/php/emp.txt

7369|SMITH|CLERK|7902|1980-12-17|800||20

7499|ALLEN|SALESMAN|7698|1981-02-20|1600|300|30

7521|WARD|SALESMAN|7698|1981-02-22|1250|500|30
.

.

b. From mysql monitor, enter:

mysql>LOAD DATA INFILE 'c:/php/emp.txt' INTO TABLE emp FIELDS TERMINATED BY '|';
c. Or put the load statement into the sql file c:/php/load_tbl.sql
mysql>SOURCE c:/php/load_tbl.sql

