PHP Programming with MySQL (second edition) by Don Gosselin, Diana Kokoska, Robert Easterbrooks (ISBN-13: 978-0-5387-4584-0, ISBN-10: 0-5387-4584-3)

Reference: http://www.php.net/manual/en/langref.php
Reference: http://dev.mysql.com/
Chapter 8: Manipulating MySQL Databases with PHP
One of PHP’s greatest strengths is its ability to access and manipulate databases. With its strong support for Open Database Connectivity (ODBC), you can use PHP to gain direct access to any database that is ODBC compliant, including Oracle, Informix, PostgreSQL, and MySQL. PHP also allows you to work directly with different types of databases without going through ODBC.
PHP also supports other methods of accessing data sources, including SQLite, database abstraction layer functions, and PEAR DB. SQLite and database abstraction layer functions work with file-based databases instead of server-based databases such as MySQL. The PHP Extension and Application Repository (PEAR) is a library of open source PHP code. One of the most popular PEAR code modules is PEAR DB, which simplifies access between PHP and a database server by providing a generic interface that works with various types of database systems, similar to how ODBC works. Although PEAR DB and ODBC perform similar functions, PEAR DB is designed specifically to work with PHP, whereas ODBC is a more generic protocol used by many programming languages and database management systems.
With so many database connectivity options, how do you decide which method to use for accessing databases with PHP? First, you need to select a database management system. You could start with an open source database such as PostgreSQL or MySQL, because they are free and fairly easy to learn. After you select a database, you need to determine whether PHP can access it directly or whether it must go through a layer such as ODBC or PEAR DB. Using ODBC or PEAR DB makes it easier for you to write PHP code that can be used with a variety of databases. However, your PHP script will be faster if it can access a database directly, without going through a PEAR DB or ODBC layer. If you think your PHP script will need to access more than one type of database, you should use PEAR DB or ODBC. To be more precise, you should use PEAR DB over ODBC because PEAR DB is designed specifically for the PHP language. Yet, ODBC is sometimes preferable, especially when you need to access Microsoft data source products such as Access or Excel. However, if you plan to work with a single database, such as MySQL, and you are more concerned with your Web application’s performance than its compatibility with multiple database systems, use PHP’s direct database access if it’s available for your database management system.
Connecting to MySQL with PHP

Before you can use PHP to read from and write to MySQL databases, you need to enable MySQL support in PHP and learn how to connect to the MySQL database server.

Determining which MySQL Package to Use
In PHP versions earlier than PHP 5, support for MySQL was installed by default. However, starting with PHP5, you must enable MySQL support in PHP by configuring your PHP installation to use the mysqli or mysql package.
The mysqli (MySQL Improved) package became available with PHP 5, and is designed to work with MySQL version 4.1.3 and later. If you use earlier versions of PHP or MySQL, you must use the mysql package. With newer versions of PHP and MySQL, you can use either mysql or mysqli. The mysqli package is the object-oriented equivalent of the mysql package.

Opening and Closing a MySQL Connection

You must first use the mysql_connect() function to open a connection to a MySQL database server. The mysql_connect() function returns a link identifier as an integer if it connects successfully to the database or a Boolean FALSE if it doesn’t. You assign the return value from the mysql_connect() function to a variable that you can use to access the database in your script. The basic syntax for the mysql_connect() function is as follows:
$connection = mysql_connect("host" [,"user", "password"]);

The host argument allows you to specify the host name where your MySQL database server is installed. If you are connecting to an instance of the MySQL database server that is running on the same server as the PHP scripting engine, use a value of "localhost" or "127.0.0.1" for the host argument. However, if you are working with a MySQL database server that is running on a different (remote) server than the PHP scripting engine, you need to enter the name or IP address of the MySQL server. The user and password arguments allow you to specify a MySQL account name and password.

$DBConnect = mysql_connect("localhost", "mycouser", "mycopassword");
When your PHP script ends, any open database connections close automatically. However, you should close the database connections with the mysql_close() function when you finish using them. This ensures that the connection doesn’t keep taking up space in your Web server’s memory while the script finishes processing. You close a database connection by passing the database connection variable to the mysql_close() function.

mysql _close($DBConnect);

Reference: http://dev.mysql.com/doc/refman/5.1/en/dynindex-cfunction.html
NOTE: To change users after connecting to a database, use the mysql_change_user() function.

Reference: http://dev.mysql.com/doc/refman/5.1/en/mysql-change-user.html
After you connect to a database with the mysql_connect() function, you can use the functions below to return information about your installation of the MySQL server.

	Function
	Description

	mysql_get_client_info()
	Returns the MySQL client version

	mysql_get_client_version()
	Returns the MySQL client version as an integer

	mysql_get_host_info(connection)
	Returns the MySQL database server connection information

	mysql_get_proto_info(connection)
	Returns the MySQL protocol version

	mysql_get_server_info(connection)
	Returns the MySQL database server version

MySQL server information functions

NOTE: The mysql_get_client_info() and mysql_get_client_version() functions do not accept any arguments. These functions do not actually require a database connection, as they return information about your local client, not the MySQL server. However, you must pass the variable representing the database connection to the rest of the functions listed above.

NOTE: The terms client and server require some explanation. Because the client and server are defined in relation to MySQL, the Web server where the PHP script is running is the client when communicating with the MySQL server. The mysql_get_client_info() and mysql_get_client_version() functions return information about the mysql package that PHP is using. The remainder of the functions return information about the database server and the MySQL application running on it.

Reporting MySQL Errors

 If an error prevents the connection from being created, it is useful to know why the mysql_connect() function failed. They mysql_error() function returns a text string describing the error, and the mysql_errno() function returns the numeric code of the error. You can use these functions when debugging your code, as they provide specific details about the cause of the error.
Reference: http://dev.mysql.com/doc/refman/5.1/en/mysql-error.html
The die() function exits the script immediately, any further script output, such as navigation buttons or a Web form, is not displayed. For this reason, do not use the die() function when it will prevent the Web page from displaying properly.

NOTE: the exit() function works the same as the die() function, and exits the script immediately.

The mysql_error() and mysql_errno() functions only return the results of the previous mysql_*() function (excluding mysql_error() and mysql_errno() themselves). It is important to call these functions before calling another function in the mysql package; otherwise, the error information will be lost.

NOTE: In the mysqli package, connection errors are reported using the mysqli_connect_error() and mysqli_connect_errno() functions, which do not accept any parameters. For all other database errors, the mysqli_error() and mysqli_errno() functions are used, and are called in the same manner as mysql_error() and mysql_errno().

Suppressing Errors with the Error Control Operator

Although standard error messages generated by programming languages such as PHP are helpful to programmers, they represent a potential security risk. Also, they may confuse less technical users, who might thing they somehow caused the error. Errors can and will occur, but you should never let your users think that they did something wrong.
Functions in PHP, including those in the mysql package, normally display errors and warnings as they occur. You can suppress those messages by using the error control operator (@). You can place the error control operator before any expression, although it is most commonly used with built-in PHP functions, especially functions that access external data sources such as files and databases. Using the error control operator to suppress error messages does not mean you can ignore errors. Instead, it provides a more graceful way of handling an error that does not reveal information about the underlying system.

Reference: http://www.php.net/manual/en/language.operators.errorcontrol.php
NOTE: You should never display the actual error message or error number returned by the mysql_error() and mysql_errno() functions in a production PHP script. Information returned by these functions could expose vulnerabilities of the server, providing a means of attacking it. In a production environment, these scripts should be rewritten to display a custom error message that does not reveal information about the PHP scripting engine or the MySQL database, and to write the error code and message to a log file.

Working with MySQL Databases

Although you will usually use MySQL Monitor, phpMyAdmin, or similar tools to perform database structural changes, you can use PHP to perform these tasks. The mysql package provides the necessary functions for creating, selecting, and deleting databases.

Creating a Database

In MySQL Monitor, you used the CREATE DATABASE statement. In PHP, you use the mysql_create_db() function. Its basic syntax is:
$result = mysql_create_db("dbname" [, connection]);
You may notice that the connection value is optional. If the link connection is not specified, PHP uses the last connection opened using mysql_connection(). This simplifies the code if you only have one link connection open at a time. The mysql_create_db() function returns a Boolean TRUE value if successful, or FALSE if an error occurred.

NOTE: You may not have privileges to create databases for the MySQL server to which you are connecting. If so, you may receive one of two error messages: an “insufficient privileges” message from the MySQL server or an “undefined function” message for the mysql_create_db() function.
The function mysql_create_db() is deprecated. It is preferable to use mysql_query() to issue an sql CREATE DATABASE statement instead.

Selecting a Database

You select a database or change to a different database with the mysql_select_db() function. The syntax for the function is:

mysql_select_db(database [, connection]);

The function returns a Boolean value of TRUE if it successfully selects a database or FALSE if it doesn’t.

Reference: http://php.net/manual/en/function.mysql-select-db.php
Usually, you have several pages that all use the same database. Also, it is a security risk to have passwords in the files that are directly accessible from the Web. For these reasons, you can use an include file to connect to the MySQL server and select a database.

The primary different between the code in an include file and the code embedded in a PHP script itself is that the code in the include file closes the connection and sets the connection variable to FALSE if the database named in $DBName could not be selected.

The PHP script only needs to verify that $DBConneect is not FALSE before using any database functions. Also, the script only calls the mysql_close() function if $DBConnect is not FALSE, because the connection was already closed or was never successfully opened if $DBConnect is FALSE.

Deleting a Database

To delete a database, you use the mysql_drop_db() function. The syntax is:

$Result = mysql_drop_db("dbname" [, connection]);

The mysql_drop_db() function returns TRUE if the database was successfully dropped, or FALSE if an error occurred. If a value of FALSE is returned, you use the mysql_error() function to display the error message.

This function is deprecated, it is preferable to use mysql_query() to issue an sql DROP DATABASE statement instead.
Working with Tables
In this section, you will learn how to create and delete tables.

Using mysql_query()

In PHP, you use the mysql_query() function to send SQL statements to MySQL. Almost every SQL command you send to MySQL from PHP is executed with this function. Its basic syntax is:

mysql_query(query [, connection]);
The mysql_query function returns one of three values, depending on the type of query executed. For SQL statements that do not return information from the database, such as the CREATE TABLE statements, the mysql _query() function returns a value of TRUE if the statement executes successfully. For SQL statements that return information from the database, such as SELECT and SHOW statements, the mysql_query() function returns a result pointer that represents the query results. A result pointer is a special type of variable that refers to the currently selected row in the list of records returned by MySQL, called a resultset. The result pointer is a way of keeping track of where you are in a resultset. You assign the result pointer to a variable, which you can use to access the resultset in PHP. The mysql_query() function returns a value of FALSE for any SQL statements that fail, regardless of whether they return information from the database.

Reference: http://www.php.net/manual/en/function.mysql-query.php
NOTE: When mysql_query() returns a resultset, you use the mysql_num_rows() function to determine the number of records in the resultset. The mysql_num_rows() function takes a single parameter, which is the resultset variable. If the parameter is not a valid resultset, mysql_num_rows() returns FALSE.

Reference: http://www.php.net/manual/en/function.mysql-num-rows.php
Creating and Deleting Tables

To create a table, you use the CREATE TABLE statement with the mysql_query() function. Be sure you have executed the mysql_select_db() function before executing the CREATE TABLE statement, or you might create your new table in the wrong database.
Reference: http://dev.mysql.com/doc/refman/5.1/en/create-table.html
NOTE: One common practice in MySQL, and databases in general, is to create a numeric index that is used as a primary key identifier for each record. To identify a field as a primary key in MySQL, you include the PRIMARY KEY keywords when you first define a field with the CREATE TABLE statement. The AUTO_INCREMENT keyword is often used with a primary key to generate a unique ID for each new row in a table. For the first row inserted into a table, a field created with the AUTO_INCREMENT keyword is assigned a value of 1. The value of the field of each subsequently added row is increment by 1 from the preceding row. Another keyword that is often used with primary keys is NOT NULL, which requires a field to include a value.

To prevent your code from trying to create a table that already exists, use a mysql_query() function that checks for the table using the SHOW TABLES LIKE command. If the function executes successfully and does not return 0 rows, the table already exists. You determine the number of rows in the resultset with the mysql_num_rows() function.

To delete a table, you use the DROP TABLE statement with the mysql_query() function.

Reference: http://dev.mysql.com/doc/refman/5.1/en/drop-table.html
 Manipulating Records
Adding, Deleting, and Updating Records

To add records to a table, you use the INSERT and VALUES keywords with the mysql_query() function. You should specify the columns that you are populating, and that the values in the VALUES list must be in the same order.
Also remember that you can specify NULL in any fields for which you do not have a value.

When you add records to a table that includes an AUTO_INCREMENT field, you omit the column name and value form the lists.

Alternatively, you can include the column name in the list and specify NULL for the field value.

Reference: http://dev.mysql.com/doc/refman/5.1/en/insert.html
[chapter_08_10.php]

To add multiple records to a database from an external file, you use the LOAD DATA statement with the name of the local text file that contains the records you want to add.
Reference: http://dev.mysql.com/doc/refman/5.1/en/load-data.html
To update records in a table, you use the UPDATE statement. The UPDATE keyword specifies the name of the table to update and the SET keyword specifies the value to assign to the fields in the records that match the condition in the WHERE keyword.

Reference: http://dev.mysql.com/doc/refman/5.1/en/update.html
To delete records from a table, you use the DELETE statement with the mysql_query() function. Remember that the WHERE keyword determines which records to delete in the table.

Reference: http://dev.mysql.com/doc/refman/5.1/en/delete.html
To delete all the records in a table, omit the WHERE clause.

You will create an All-in-One Web form that adds a new customer record to the customer table in the myco2 database.
You also use the mysql_insert_id() function, which returns the ID created with AUTO_INCREMENT in the last INSERT operation. You pass to the mysql_insert_id() function the variable to which you assigned the database connection with the mysql_connect() function. The mysql_insert_id() function is useful when you need to find the primary key created for new records you add to a database table.

Reference: http://www.php.net/manual/en/function.mysql-insert-id.php
Returning Information on Affected Records

The functions mysql_affected_rows() and mysql_info() return information on the records that were affected by an INSERT, UPDATE, or DELETE query.

Using the mysql_affected_rows() Function

With queries that return results, such as SELECT queries, you can use the mysql_num_rows() function to find the number of records returned from the query. However, with queries that modify tables but do not return results, such as INSERT, UPDATE, and DELETE queries, you can use the mysql_affected_rows() function to determine the number of affected rows. You pass to the mysql_affected_rows() function the variable that contains the database connection returned from the mysql_connect() function.
Reference: http://www.php.net/manual/en/function.mysql-affected-rows.php
Using the mysql_info() Function

For queries that add or update records, or that alter a table’s structure, you can use the mysql_info() function to return information about the query. This function returns the number of operations for various types of actions, depending on the type of query. For example, with INSERT queries, the mysql_info() function returns the number of records added and duplicated, along with the number of warnings. For LOAD DATA queries, the mysql_info() function returns the number of records added, deleted, and skipped, along with the number of warnings. However, the mysql_info() function returns information about queries that match one of the following formats:
· INSERT INTO … (…) SELECT …

· INSERT INTO … (…) VALUES (…), (…), (…)

· LOAD DATA INFILE …

· ALTER TABLE …

· UPDATE …

For any queries that do not match one of the preceding formats, the mysql_info() function returns an empty string. The mysql_info() function only returns query information when you add multiple records with the INSERT keyword.

Reference: http://www.php.net/manual/en/function.mysql-info.php
Retrieving Records
In this section, you will learn to use PHP to retrieve records from tables in a database.

Working with Query Results

Recall that for SQL statements that return results, such as SELECT and SHOW statements, the mysql_query() function returns a result pointer that represents the query results. You assign the result pointer to a variable, which you can use to access the resultset in PHP. To access the database records through the result pointer, you must use one of the functions listed below:

	Function
	Description

	mysql_data_seek($Result, position)
	Moves the result pointer to a specified row in the resultset.

	mysql_fetch_array($Result, MYSQL_ASSOC | MYSQL_NUM | MYSQL_BOTH)
	Returns the fields in the current row of a resultset into an indexed array, associative array, or both, and moves the result pointer to the next row.

	mysql_fetch_assoc($Result)
	Returns the fields in the current row of a resultset into an associative array and moves the result pointer to the next row.

	mysql_fetch_lengths($Result)
	Returns the field lengths for the current row in a resultset into an indexed array.

	mysql_fetch_row($Result)
	Returns the fields in the current row of a resultset into an indexed array and moves the result pointer to the next row.

Common PHP functions for accessing database results
Reference: http://php.net/manual/en/function.mysql-fetch-row.php

http://dev.mysql.com/doc/refman/5.1/en/mysql-fetch-row.html
Retrieving Records into an Indexed Array

The mysql_fetch_row() function returns the fields in the current row of a resultset into an indexed array and moves the result pointer to the next row. You can then use the array to access the individual fields in the row.

The mysql_fetch_row() function returns the fields in the current row or a value of FALSE when it reaches the last row in the resultset. This allows you to iterate through all the rows in a resultset.

Retrieving Records into an Associative Array

The mysql_fetch_assoc() function returns the fields in the current row of a resultset into an associative array and moves the result pointer to the next row. The primary difference between the mysql_fetch_assoc() function and mysql_fetch_row() function is that instead of returning the fields into an indexed array, the mysql_fetch_assoc() function returns the fields into an associative array and uses each field name as the array key.

Reference: http://php.net/manual/en/function.mysql-fetch-assoc.php
Closing Query Results
When you are finished working with query results retrieved with the mysql_query() function, you should use the mysql_free_result() function to close the resultset. This ensures that the resultset does not keep taking up space in your Web Server’s memory. If you do not call mysql_free_result(), the memory used by the resultset will be freed when the script completes. To close the resultset, pass to the mysql_free_result() function the variable containing the result pointer from the mysql_query() function.

Reference: http://www.php.net/manual/en/function.mysql-free-result.php
NOTE: You can only use the mysql_free_result() function with SQL statements that return results, such as SELECT queries, and only when the SQL statement successfully returned results. If you attempt to use the mysql_free_result() function with SQL statements that do not return results, such as the CREATE DATABASE and CREATE TABLE statements, or on an empty resultset, you will receive an error.

Accessing Query Result Information

The mysql_num_rows() function returns the number of rows in a query result. You use the mysql_num_fields() function to return the number of fields in a query result.
Both mysql_num_rows() and mysql_num_fields() functions accept the result pointer from the mysql_query() function as an optional argument.
Reference: http://www.php.net/manual/en/function.mysql-num-rows.php
NOTE: mysql_num_rows() retrieves the number of rows from a result set. This command is only valid for statements like SELECT or SHOW that return an actual result set. To retrieve the number of rows affected by a INSERT, UPDATE, REPLACE or DELETE query, use mysql_affected_rows().

