Urinary System Kidneys Uriniferous tubule Ureters, bladder and urethra

Urinary System Functions

- 1) Excretion
 - 1) Waste products of metabolism
 - 2) Foreign substances
- 2) Homeostasis
 - 1) Regulate total body water & extracellular fluid volume
 - 2) Electrolyte balance (Na+)
 - 3) Acid-base balance
- 3) Endocrine function
 - 1) Erythropoietin
 - 2) Enzyme renin >>> regulate aldosterone secretion
 - 3) Vitamin D activation

Organs

- 2 kidneys produce urine 2 ureters
- 1 bladder
- 1 urethra

transport, store, excrete urine

Kidneys

300 gm; 10 to 12 cm by 3 to 4 cm

Level T12 to L3

Left kidney slightly higher due to liver on right

Just anterior to psoas and quadratus lumborum mm.

Retroperitoneal

3 capsules

- 1) True = fibrous CT
- 2) Adipose capsule = perirenal fat
- 3) Renal fascia = subserous fascia

Hilus

Medial indentation

Vessels and nerves enter and exit

Sinus

Thin concave slit within which find pelvis, blood vessels, nerves and loose CT

Pelvis and calyxes (major and minor)

lined with transitional epithelium

1 pelvis > 3 to 4 major calyxes > 7 to 14 minor calyxes

Cortex

Outer zone
Renal columns

Medulla = renal pyramids

Striated pyramidal regions Apex projects into minor calyx

Lobe of kidney

Renal pyramid plus surrounding cortical matter, both outer cortex and within renal column

Lobule of kidney

Subunits within outer zone of cortex

Renal a.

Anterior and posterior divisions 5 segmental aa. Interlobar a. Arcuate a. Interlobular a.

Afferent arterioles

earson Education, Inc., publishing as Benjamin Cummings.

Afferent arterioles

Efferent arterioles

Functional unit = Uriniferous tubule

- 1) Nephron
- 2) Collecting duct

Nephron

- 1) Renal corpuscle
 - 1) Glomerulus tuft of capillaries
 - 2) Bowman's capsule double walled cup surround glomerulus
- 2) Proximal convoluted tubule
- 3) Loop of Henle
- 4) Distal convoluted tubule

Cortex

Convoluted tubules Renal corpuscles

Pyramids

Loops of Henle

Collecting ducts

2 types of nephrons

Cortical

Juxtamedullary

- Urine formed by 3 processes
- Glomerular filtration of blood plasma
- 2) Tubular reabsorption (filtrate > plasma)
- 3) Tubular secretion (plasma > filtrate)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Bowman's capsule

2 walls

- 1) Parietal layer simple squamous epithelium
 - 2) Visceral layer-podocytes

Podocytes

Branching processes interdigitate with processes of adjacent cells to totally coat glomerular capillaries Interdigitating processes leave small slits = filtration slits

Filtration barrier

Blood plasma filters from glomerular capillary to lumen of Bowman's capsule

1) Fenestrated capillaries

Cells and platelets cannot pass

2) Basement membrane

Large proteins (> 160,000) cannot pass

3) Filtration slits

Small proteins (>40,000) cannot pass

Proximal convoluted tubule

Simple columnar epithelium with brush border and basal striations

Function

- Reabsorb glucose, NaCl, water, protein, amino acids; about 80% of filtrate
- 2) Secrete H+, foreign substances

Distal convoluted tubule

Simple cuboidal epithelium with basal striations

Functions

- 1) Reabsorb Na+ controlled by aldosterone to regulate blood volume
- 2) Acid base balance

and Collecting Duct

Loop of Henle Simple cuboidal and simple squamous epithelium

Function

Counter-current multiplier

Increases hypertonicity of medullary interstitium to allow reabsorption of water in excess of sodium to regulate plasma osmolarity

Ascending limb pumps NaCI to interstitium

Collecting ducts

Simple cuboidal epithelium to simple columnar epithelium

Distinct cell boundaries

Function

Concentrate urine to regulate plasma osmolarity

Water is reabsorbed by osmosis as CD passes through hypertonic interstitium

Regulated by ADH, which increases water permeability increasing water reabsorption

Decreased ADH > decrease water reabsorption

Lack of ADH: Diabetes insipidus

Peritubular capilaries

after efferent arterioles, capillaries surround tubule; special area: around Loop

Vasa recta = capillary network of medulla

= counter-current exchanger

Capillaries loop in/out of pyramids

= a portal system

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

JG apparatus = Juxtaglomerular apparatus

- 1) Macula densa
- 2) JG cells

JG cells

- Specialized smooth muscle of afferent arteriole
 - 1) Act as **baroreceptors**
 - 2) Secretory granules secrete **renin**
- Decreased blood pressure > increased secretion of renin

Macula densa

Tall, narrow, simple columnar epithelial cells in wall of DCT

Adjacent to JG cells

Sense NaCl content of filtrate

Decreased NaCl > increased renin secretion

Renin > Increased BP

Decreased blood pressure > increased renin Renin = enzyme Catalyzes: Angiotensinogen (from liver) > angiotensin I

Converting enzyme (in lung):

Catalyzes: Angiotensin I > angiotensin II

Angiotensin II:

Leads to increased BP

- 1) Vasoconstriction
- Increased secretion aldosterone > increased Na+ reabsorption
- 3) Increased ADH > increase water reabsorption

Ureters

25 to 30 cm by 4 to 5 mm Retroperitoneal Urine moves via peristalsis

- Walls of calices, pelvis, ureter, bladder,1st part urethra:
- 1) Mucosa

Transitional epithelium CT

2) Muscularis

Inner longitudinal

Outer circular

Outermost longitudinal in last 1/2 ureter & bladder

3) Adventitia

CT

Bladder

300 ml storage capacity

Within true pelvis

Below peritoneal cavity

Posterior to symphysis pubis, anterior to uterus in female, anterior to rectum in male

3 openings = trigone of bladder

Ureters

About 2 cm oblique path through posterior wall of bladder No backflow

Urethra

son Education, Inc., publishing as Benjamin Cummings

Sphincters:

Internal

Smooth muscle at base of bladder

External

Skeletal muscle of urogenital diaphragm

Male urethra

3 portions **Prostatic** – pass through prostate **Membranous** – through urogenital diaphragm **Penile or cavernous or spongy** –

through shaft of penis

About 20 cm long Epithelium:

Transitional >

- > pseudostratified
- > stratified squamous

Female urethra

About 3 to 5 cm long Same epithelial changes as in male

