Circulatory System

Blood vessels

Arteries Capillaries

Veins

Heart

Chambers

Surfaces

Coronary circulation

Internal features

Conducting system

Fetal Circulation

Circulatory system

Circulating blood

Source of tissue fluid

Supplies nutrients, removes waste

Blood plasma and tissue fluids freely exchange through permeable walls of capillaries, the smallest blood vessels. Capillaries are in intimate contact with almost all tissues.

System Components

- 1) Heart pump
- 2) Systemic vessels closed circuit, supplies tissues of body
- 3) Pulmonary vessels
 - circuit to lungs,
 exchange oxygen
 and carbon dioxide
 with the atmosphere

Blood Vessels

- 3 coats
- 1) Tunica intima
- 2) Tunica media
- 3) Tunica adventitia

Blood Vessels

1) Tunica intima

Endothelium – simple squamous epithelium

Loose CT

Internal elastic membrane (lamina) – sheet of protein elastin (like elastic fibers)

2) Tunica media

Mix: CT, smooth muscle, elastic fibers

3) Tunica adventitia

External elastic lamina

CT, vasa vasorum = small blood vessels that supply wall of very large arteries

Structure of Arteries & Veins

Artery

Figure 20.1a

Classes of Vessels

- 1) Arteries leave the heart
 - a) Elastic arteries
 - b) Muscular arteries
 - c) Arterioles
- 2) Capillaries
- 3) Veins return blood to

heart

- a) Venules
- b) Small, medium, large veins

Low Permeability Capillaries

- Blood-brain barrier
 - Capillaries have complete tight junctions
 - No intercellular clefts are present
 - Vital molecules pass through
 - Highly selective transport mechanisms
 - Not a barrier against:
 - Oxygen, carbon dioxide, anesthetics, other drugs

Sinusoids

- Wide, leaky capillaries found in some organs
 - Usually fenestrated
 - Intercellular clefts are wide open
- Occur in bone marrow and spleen
 - Sinusoids have a large diameter and twisted course

Valves – prevent backflow, blood propelled by muscle pump

Heart

- Pericardium
- 3 Tunics
- 4 Chambers
- Position of heart
- Surfaces
- Coronary circulation
- **Internal features**
- Conducting system

Pericardium

=double walled serous sac

simple squamous epithelium (mesothelium) and some loose C.T.

- 1) Parietal layer
- 2) Visceral layer

Separated by serous fluid which decreases friction

Parietal pericardium

Fibrous pericardium

Serous pericardium = mesothelium

Visceral pericardium

= mesothelium of epicardium

(may see the 2 terms, visceral pericardium & epicardium, used interchangeably)

Pericardial cavity

filled with pericardial fluid

Heart has same 3 tunics as blood vessels but with different names:

- 1) Endocardium tunica intima
- 2) Myocardium tunica media
- 3) Epicardium tunica adventitia

- 4 Chambers of the Heart
- 2 atria
- 2 ventricles

- Right side pumps to pulmonary circulation
- Left to systemic circulation

- Veins enter the atria
- Arteries exit at the ventricles

Position of Heart

Behind body of sternum Anterior to vertebrae T5 to T8

Anterior and slightly to left in thorax

Region = **mediastinum** Between the 2 lungs

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Heart Sounds / Cardiac Cycle

- 1) Close AV valves "Lub"
- 2) Close semilunar valves "Dup"

Semilunar valve closed

Right and left coronary arteries

Travel within atrioventricular groove (= coronary sinus)

Left coronary artery branches:

Anterior Interventricular branch

Travels in interventricular sulcus

Anastomoses on posterior surface

Circumflex branch

Anastomoses on posterior surface with right coronary

Right and left coronary arteries

Travel within atrioventricular groove (= coronary sinus)

Right coronary artery branches:

Marginal branch

along inferior border/margin

Posterior interventricular branch

In interventricular sulcus

Cardiac Veins:

Great cardiac vein

 In anterior interventricular sulcus

- Middle cardiac vein
 - In posterior interventricular sulcus
- •Small cardiac vein

•Along inferior margin

Coronary sinus:

•found in posterior atrioventricular groove (coronary sulcus)

•Empties into Right Atrium

Internal Features of the Heart

Chambers

Right atrium Right ventricle Left atrium Left ventricle

Right atrium Openings SVC, IVC, coronary sinus

Fossa ovalis

Depression in interatrial septum

Right atrioventricular orifice

Tricuspid valves

Pectinate muscles in auricle

Fossa ovalis

A depression in the location of foramen ovale

Foramen ovale = opening through the interatrial septum which opens to left atrium in fetus

Valve of IVC directs blood through foramen ovale during fetal life

Foramen closes after birth

Newborn

Right Ventricle

2 openings

- Right atrioventricular orifice
 Tricuspid valve AV valve
 Chordae tendineae fibrous cords
- 2) Orifice to pulmonary trunk Pulmonary semilunar valves

Papillary muscles

Trabeculae carneae

Muscle ridges throughout wall

Tricuspid valve – AV valve

3 Triangular cusps, attach by cordae tendineae to papillary muscles

Prevent backflow during ventricular contraction

Pulmonary semilunar valve

3 pouches

Opens during ventricular contraction due to flow of blood pushing pouches against wall

Closes due to backflow of blood caused by elastic recoil in pulmonary artery, filling pouches

Left Atrium

Chamber = confluence of 4 vessels, therefore smooth wall

Receive oxygenated blood from lungs via 4 **pulmonary veins**, 2 each side

Wall structure similar to Right Atrium

Mitral valve = bicuspid = left AV valve

Left Ventricle

Lumen volume the same as right ventricle

Walls 3X as thick to overcome systemic resistance

Left Ventricle

2 openings

- 1) Left AV orifice mitral (bicuspid) valve; chordae tendineae
- 2) Aortic orifice semilunar valve
 At peak of aortic vestibule
 Valve flaps thicker

Papillary mms. Pectinate mms.

Mitral valve Chordae tendineae Papillary muscles

Conduction System of Heart

Sinoatrial (SA) node

Atrioventricular (AV) node

Bundle of His

Purkinje fibers

Skeleton of heart

Sinoatrial node

Pacemaker of heart

In wall of right atrium near opening of SVC

Not recognizable

Cardiac fibers with the lowest threshold, therefore have fastest rhythm

Impulse spreads over 2 atria via gap junctions between cardiac muscle cells

Atrioventricular (AV) node

In floor of atrium near coronary sinus

After a short delay (millisecond) an impulse is conducted along interventricular septum via Bundle of His

Skeleton of Heart

Fibrous rings around AV and semilunar valves

Muscle of atria and ventricles attach to rings

Prevent conduction of impulse from atria to ventricles

Bundle of His = bundle of Purkinje cells passes through cardiac skeleton, down interventricular septum

AV node > AV septum > 2 branches (right and left ventricles)

Branches = Purkinje fibers (cells)

Fetal Circulation and Changes at Birth

- Foramen ovale
 - Passage between RA and LA
 - Becomes fossa ovalis
- Ductus Arteriosus
 - Passage between pulmonary trunk and aortic arch
 - Becomes ligamentum arteriosum
- Umbilical Arteries
 - Inside anterior body wall to umbilicus
 - Become medial umbilical ligaments
- Umbilical Veins
 - From umbilicus to liver
 - Become ligamentum teres
- Ductus Venosus
 - Continuation of umbilical veins through liver to inferior vena cava
 - Becomes ligamentum venosum

Copyright @ Pearson Education, Inc., publishing as Benja

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.