PowerPoint[®] Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Digestive System and Body Metabolism

ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY

NINTH EDITION

ELAINE N. MARIEB

14 PARTA

The Digestive System Functions

- Ingestion—taking in food
- Digestion—breaking food down both physically and chemically
- Absorption—movement of nutrients into the bloodstream
- Defecation—rids the body of indigestible waste

Organs of the Digestive System

- Two main groups
 - Alimentary canal (digestive tract, gastrointestinal tract or GI tract)—continuous coiled hollow tube
 - Accessory digestive organs

Organs of the Digestive System

Mouth Pharynx Esophagus Stomach Small intestine Large intestine Anus

Mouth (Oral Cavity) Anatomy

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Mouth Physiology

- Mastication (chewing) of food
- Mixing masticated food with saliva
- Initiation of swallowing by the tongue
- Allows for the sense of taste

Pharynx Anatomy

Esophagus Anatomy and Physiology

- Anatomy
 - About 10 inches long
 - Runs from pharynx to stomach through the diaphragm
- Physiology
 - Conducts food by peristalsis (slow rhythmic squeezing)
 - Passageway for food only (respiratory system branches off after the pharynx)

- Four layers
 - Mucosa
 - Submucosa
 - Muscularis externa
 - Serosa

- Mucosa
 - Innermost, moist membrane consisting of
 - Surface epithelium
 - Small amount of connective tissue (lamina propria)
 - Small smooth muscle layer

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Submucosa

- Just beneath the mucosa
- Soft connective tissue with blood vessels, nerve endings, and lymphatics

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

- Muscularis externa—smooth muscle
 - Inner circular layer
 - Outer longitudinal layer
- Serosa—outermost layer of the canal wall contains fluid-producing cells
 - Visceral peritoneum—outermost layer of wall
 - Parietal peritoneum—lines the abdominopelvic cavity

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Alimentary Canal Nerve Plexuses

- Two important nerve plexuses serve the alimentary canal
- Both are part of the autonomic nervous system
 - Submucosal nerve plexus
 - Myenteric nerve plexus
- Function is to regulate mobility and secretory activity of the GI tract organs

Stomach Anatomy

- Located on the left side of the abdominal cavity
- Food enters at the cardioesophageal sphincter
- Food empties into the small intestine at the pyloric sphincter (valve)

Stomach Anatomy

- Regions of the stomach
 - Cardiac region—near the heart
 - Fundus—expanded portion lateral to the cardiac region
 - Body—midportion
 - Pylorus—funnel-shaped terminal end
- Rugae—internal folds of the mucosa
- Lesser curvature—concave medial surface
- Greater curvature—convex lateral surface

Stomach Anatomy

Stomach Physiology

- Temporary storage for food
- Site of food breakdown
- Chemical breakdown of protein begins
- Delivers chyme (processed food) to the small intestine

Structure of the Stomach Mucosa

Mucosa is simple columnar epithelium

- Gastric glands—situated in gastric pits and secrete gastric juice
 - Mucous neck cells—produce a sticky alkaline mucus
 - Parietal cells—produce hydrochloric acid
 - Chief cells—produce protein-digesting enzymes (pepsinogen, converted to pepsin)
 - Enteroendocrine cells—produce gastrin

Structure of the Stomach Mucosa

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Structure of the Stomach Mucosa

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Small Intestine

- The body's major digestive organ
- Site of nutrient absorption into the blood
- Muscular tube extending from the pyloric sphincter to the ileocecal valve
- Suspended from the posterior abdominal wall by the mesentery

Subdivisions of the Small Intestine

- Duodenum
 - Attached to the stomach
 - Curves around the head of the pancreas
- Jejunum
 - Attaches anteriorly to the duodenum
- Ileum
 - Extends from jejunum to large intestine

Anatomy of the Small Intestine

Figure 14.6

Anatomy of the Small Intestine

- Three structural modifications that increase surface area
 - Microvilli—tiny projections of the plasma membrane (create a brush border appearance)
 - Villi—fingerlike structures formed with a mucosa core
 - Circular folds (plicae circulares)—visible folds with a submucosa core

Copyright © 2009 Pearson Education, Inc., publishing as Benjamin Cummings

(c) Absorptive cells

Figure 14.7c

Large Intestine

- Larger in diameter, but shorter in length, than the small intestine
- Frames the internal abdomen

- Cecum—saclike first part of the large intestine
- Appendix
 - Accumulation of lymphatic tissue that sometimes becomes inflamed (appendicitis)
 - Hangs from the cecum

- Colon
 - Ascending—travels up right side of abdomen
 - Transverse—travels across the abdominal cavity
 - Descending—travels down the left side
 - Sigmoid—enters the pelvis
- Rectum and anal canal also in pelvis

- Anus—opening of the large intestine
 - External anal sphincter—formed by skeletal muscle and under voluntary control
 - Internal involuntary sphincter—formed by smooth muscle
 - These sphincters are normally closed except during defecation

- No villi present
- Goblet cells produce alkaline mucus which lubricates the passage of feces
- Muscularis externa layer is reduced to three bands of muscle called teniae coli
- These bands cause the wall to pucker into haustra (pocketlike sacs)
- Epiploic appendages: little tabs of fat hanging off wall

Accessory Digestive Organs

- Teeth
- Salivary glands
- Pancreas
- Liver
- Gallbladder

Teeth

- Function is to masticate (chew) food
- Humans have two sets of teeth
 - Deciduous (baby or "milk") teeth
 - 20 teeth are fully formed by age two
- Permanent teeth
 - Replace deciduous teeth between the ages of 6 and 12
 - A full set is 32 teeth, but some people do not have wisdom teeth (third molars)
 - If they do emerge, the wisdom teeth appear between ages of 17 and 25

Human Deciduous and Permanent Teeth

Figure 14.9

Regions of a Tooth

- Crown—exposed part
 - Enamel—hardest substance in the body
 - Dentin—found deep to the enamel and forms the bulk of the tooth
 - Pulp cavity—contains connective tissue, blood vessels, and nerve fibers
 - Root canal—where the pulp cavity extends into the root
- Neck
 - Region in contact with the gum
 - Connects crown to root
- Root
 - Cementum—covers outer surface and attaches the tooth to the periodontal membrane

Salivary Glands

- Three pairs of salivary glands empty secretions into the mouth
 - Parotid glands
 - Submandibular glands
 - Sublingual glands

Saliva

- Mixture of mucus and serous fluids
- Helps to form a food bolus
- Contains salivary amylase to begin starch digestion
- Dissolves chemicals so they can be tasted

Pancreas

- Located against back, posterior to the parietal peritoneum
- Extends across the abdomen from spleen to duodenum

Pancreas

- Produces a wide spectrum of digestive enzymes that break down all categories of food
- Enzymes are secreted into the duodenum
- Alkaline fluid introduced with enzymes neutralizes acidic chyme coming from stomach
- Hormones produced by the pancreas
 - Insulin
 - Glucagon

Liver & Gall Bladder

- Largest gland in the body
- Located on the right side of the body under the diaphragm
- Consists of four lobes suspended from the diaphragm and abdominal wall by the falciform ligament
- Connected to the gallbladder via the common hepatic duct

Gallbladder

- Stores and concentrates bile
- When digestion of fatty food is occurring, bile is introduced into the duodenum from the gallbladder
- Gallstones are crystallized cholesterol which can cause blockages

Bile

- Produced by cells in the liver
- Composition is
 - Bile salts
 - Bile pigments (mostly bilirubin from the breakdown of hemoglobin)
 - Cholesterol
 - Phospholipids
 - Electrolytes
- Function—emulsify fats by physically breaking large fat globules into smaller ones

- Ingestion—getting food into the mouth
- Propulsion—moving foods from one region of the digestive system to another
 - Peristalsis alternating waves of contraction and relaxation that squeezes food along the GI tract
 - Segmentation moving materials back and forth to aid with mixing in the small intestine

- Food breakdown as *mechanical* digestion
 - Examples:
 - Mixing food in the mouth by the tongue
 - Churning food in the stomach
 - Segmentation in the small intestine
 - Mechanical digestion prepares food for further degradation by enzymes

- Food breakdown as chemical digestion
 - Enzymes break down food molecules into their building blocks
 - Each major food group uses different enzymes
 - Carbohydrates are broken to simple sugars
 - Proteins are broken to amino acids
 - Fats are broken to fatty acids and alcohols

Figure 14.13 (1 of 3)

Figure 14.13 (2 of 3)

Figure 14.13 (3 of 3)

- Absorption
 - End products of digestion are absorbed in the blood or lymph
 - Food must enter mucosal cells and then into blood or lymph capillaries
- Defecation
 - Elimination of indigestible substances from the GI tract in the form of feces

Control of Digestive Activity

- Mostly controlled by reflexes via the parasympathetic division
- Chemical and mechanical receptors are located in organ walls that trigger reflexes

Control of Digestive Activity

- Stimuli include
 - Stretch of the organ
 - pH of the contents
 - Presence of breakdown products
- Reflexes include
 - Activation or inhibition of glandular secretions
 - Smooth muscle activity

Digestive Activities of the Mouth

- Mechanical breakdown
 - Food is physically broken down by chewing
- Chemical digestion
 - Food is mixed with saliva
 - Starch is broken down into maltose by salivary amylase

Activities of the Pharynx and Esophagus

- These organs have no digestive function
- Serve as passageways to the stomach

Food Breakdown in the Stomach

- Gastric juice is regulated by neural and hormonal factors
- Presence of food or rising pH causes the release of the hormone gastrin
- Gastrin causes stomach glands to produce
 - Protein-digesting enzymes
 - Mucus
 - Hydrochloric acid

Food Breakdown in the Stomach

- Hydrochloric acid makes the stomach contents very acidic
- Acidic pH
 - Activates pepsinogen to pepsin for protein digestion
 - Provides a hostile environment for microorganisms

Digestion and Absorption in the Stomach

- Protein digestion enzymes
 - Pepsin—an active protein-digesting enzyme
- Alcohol and aspirin are the only items absorbed in the stomach

Propulsion in the Stomach

- Food must first be well mixed, churning activity
- Rippling peristalsis occurs in the lower stomach
- The pylorus meters out chyme into the small intestine (30 mL at a time; about 2 tablespoons)
- The stomach empties in 4–6 hours, depending on diet

Propulsion in the Stomach

Figure 14.15a-c

Digestion in the Small Intestine

- Enzymes from the intestinal brush border function to
 - Break double sugars into simple sugars
 - Complete some protein digestion
- Pancreatic enzymes (via pancreatic ducts) play the major digestive function
 - Help complete digestion of starch (pancreatic amylase)
 - Carry out about half of all protein digestion
 - Digest fats using lipases from the pancreas
 - Digest nucleic acids using nucleases
- Alkaline content neutralizes acidic chyme
- Bile, formed by the liver, enters via the bile duct

Digestion in the Small Intestine

Figure 14.6

Absorption in the Small Intestine

- Water is absorbed along the length of the small intestine
- End products of digestion
 - Most substances are absorbed by active transport through cell membranes
 - Lipids are absorbed by diffusion
- Substances are transported to the liver by the hepatic portal vein or lymph

Food Breakdown and Absorption in the Large Intestine

- No digestive enzymes are produced
- Resident bacteria digest remaining nutrients
 - Produce some vitamin K and B
 - Release gases
- Water and vitamins K and B are absorbed
- Remaining materials are eliminated via feces
- Feces contains
 - Undigested food residues
 - Mucus
 - Bacteria
 - Water