Earth's Structures: Folds, Faults, and Fabrics - Chapter Questions

- 1. **Compare and contrast pressure, stress, shear, and strain.
- 2. **What are the three types of stress? (Use arrows to indicate the motion that causes each.)
- 3. A stressed rock can experience three kinds of deformation: elastic, brittle, or ductile (plastic). What conditions favor each? What are the results of each? (Answers in table below be sure you understand!)

Deformation type	Causes	Results
Elastic – temporary	Stress not greater than elastic limit of rock	Strain released and
deformation		shape returns to normal
Brittle – permanent	Stress greater than yield point or elastic limit of rock (usually	Strain released with
break	<u>colder temperatures</u> – nearer surface – <u>rapid</u> stress	break in rock (faulting)
	application)	
Plastic - permanent	Plastic – permanent Stress greater than yield point or elastic limit of rock (usually	
ductile deformation	higher temperatures - deeper underground - stress applied	(folding)
	slowly over <u>long time</u>)	

- 4. What is yield point or elastic limit? What does it mean?
- 5. **Compare and contrast anticlines and synclines. Domes and basins. Anticlines and domes.
- 6. Imagine the above structures were eroded to a flat top. If you were walking across these tops, where would you find the oldest rocks? Draw pictures of each and indicate oldest and youngest beds.
- 7. Describe a plunging fold. What does it look like when its top surface is eroded flat?
- 8. How can you tell the difference on the surface between a plunging syncline or anticline?
- 9. **Compare and contrast dip-slip and strike-slip faults.
- 10. Explain right-lateral and left-lateral strike-slip faults.
- 11. **Compare the movement of normal and reverse faults. What type of force produces each?
- 12. **Explain hanging wall and footwall.
- 13. Be able to label diagrams of faults with relative fault motion arrows, stress direction, fault name, and hanging wall and foot wall. (For right-and left-lateral strike-slip faults AND reverse and normal faults.)
- 14. **What kind of the fault is the San Andreas Fault?
- 15. Review this table. Be able to complete it, if blank, and ensure your understand why each box is true:

Mountain type	Formed by	World examples	California examples
Fold and Thrust	<i>Compressive stress (usually at convergent plate boundaries)</i>	Himalayas	Transverse Mountain Range (Santa Barbara and eastward)
Fault-Block	<i>Tensile stress (usually at divergent plate boundaries)</i>	East African Rift Zone Basin and Range	Sierra Nevadas
Domes	Single point of pressure pushing up from inside Earth (salt dome rising or magma rising, but not erupting)	Adirondacks, Sheep Mountain	Mt. Diablo
Erosional Remnant	Resistant rock that sticks out from surroundings, because they eroded more quickly and easily	Devil's Tower, Wyoming	Twin Peaks
Volcanic	Volcanic activity associated with hotspot, divergent plate boundary, or subduction zone	Cascade Mountains, Andes Mountains	Mt. Shasta, Glass Mountain, Mammoth Mountain

16. Review this table. Be able to complete it, if blank, and ensure your understand why each box is true:

Stress types	Plate boundaries	Fault types	Crustal thickening or thinning or both/none?	Mountain types (if any)
Compression	Convergent	<i>Reverse (+ thrust)</i>	Thickening	Fold and Thrust
Tension	Divergent	Normal	Thinning	Fault-Block
Shear	Transform	Strike-slip	None	None