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Life on Earth – Tutorial Script 
After having watched the Early Earth video tutorial, we now have an understanding of how Earth’s early 
atmosphere, crust, and oceans formed. But how about life? When did that evolve and what was early Earth’s life 
like?  
 
With a liquid ocean layer present on Earth’s surface, 4.4 billion years ago, the stage was set for the earliest life to 
form. Why were oceans necessary for life? Early Earth had no oxygen in its atmosphere. That means it also had no 
ozone layer. Ultraviolet radiation from the Sun readily reached the surface and would have irreparably damaged 
any biological material. Surface waters in the ocean block ultraviolet radiation, and thus oceans are the perfect 
place for life to first form. What were these first organisms like? The very simplest single-celled bacteria – likely 
ones that could handle extreme conditions, such as high heat and no light – also known as extremophiles.  
 
All living organisms can be classified as autotrophs or heterotrophs. Heterotrophs acquire their food by eating 
other organisms. Autotrophs make their own food, usually through a process called photosynthesis. 
Photosynthesis uses the pigment known as chlorophyll to capture light energy from the Sun, which it then uses 
to combine abundant surrounding molecules like carbon dioxide and water to synthesize sugar molecules. 
Respiration is the opposite process and happens when organisms later break down sugar to release its stored 
energy and use it for growth, reproduction, and energy-intensive metabolic processes. Whether an organism 
makes its own sugar or gets its sugar by ingesting other organisms, it still must perform respiration to access the 
stored energy.  
 
Although photosynthesis is by far the most common form of sugar synthesis at work on Earth today, another 
process at work where light is absent is called chemosynthesis. Instead of harnessing energy from the sun, 
chemosynthesis harnesses energy held within chemical bonds of gases and minerals. We see chemosynthesis 
happening today in a number of dark locations, including deep in underground mines, at the bottom of the 
seafloor where gases seep out of cracks and sediments, and in caves near sulfur-rich mineral deposits. In all these 
locations, autotrophs use energy to combine surrounding ingredients and form sugars. Any of these locations 
could have been the cradles in which early life formed on Earth. 
 
In South African gold mines, in shafts nearly 3 km underground, at temperatures as hot as 120°F or 49°C, there 
are colonies of bacteria surviving without sunlight or oxygen, making their own food from energy stored in 
chemicals in the rocks, like iron. Other species of bacteria have been found deep in mine shafts and in 1,000-m-
deep volcanic rocks along the Columbia River. In limestone caves, near volcanic sulfur-rich hot springs, bacteria 
capture energy from hydrogen sulfide gas and use that energy to synthesize sugar. Sulfuric acid is one of the toxic 
byproducts, and these bacteria live in highly acidic mucous-rich mats attached to the cave walls. The mats are 
called snottites. This example is from Cueva de Villa Luz in Tabasco, Mexico. These snottites have acid drops at their 
tips, with a pH of 0. 
 
In hydrothermal vents and hydrocarbon seeps on the bottom of the seafloor, bacteria capture energy from 
hydrogen sulfide or methane gases and use that energy to synthesize sugar. These bacteria provide the base of an 
exotic and diverse food web.  
 
Pause now. 
 
One of the first experiments to simulate the formation of the basic molecules of life was done by Stanley Miller as 
a graduate student at the University of Chicago in the early 1950s. Into a closed system of flasks, Miller put 
methane, ammonia, hydrogen gas, and water vapor—all materials that would have been major components of the 
early Earth’s atmosphere. He warmed a soup of these chemicals, circulated them through a region where they 
were subjected to electric sparks (simulating lightning), and cooled them and returned the products to the soup. 
Within a few days, the soup was a brown slime that contained amino acids, the building blocks of proteins. 
Although scientists no longer think the components of his experiment were an exact match to early Earth’s 
environment, Miller’s experiment showed scientists that it was possible to create, through natural processes, the 
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building blocks needed for life. Many scientists around the world are currently studying the synthesis of living 
cells and creating life in its simplest forms from building blocks that would have been available in early Earth.  
 
When did life first evolve on planet Earth? Oxygen isotope ratios in 4.4-billion-year-old zircon minerals indicate 
temperatures on the surface would have been cool enough for liquid water to be stable. Since life requires water, 
4.4 billion years represents a possible oldest date for life on Earth. A 3.85-billion-year-old rock from Greenland 
was found to have carbon isotope ratios suggestive of microbial activity. However, the first fossil evidence we 
have are stromatolite mounds found in 3.7-billion-year-old rocks from Greenland. Stromatolite mounds form by 
successive layers of photosynthesizing cyanobacterial mats growing in a coastal environment and doming 
upwards toward the light. Each layer traps sand within it, ultimately blocking the light, requiring new layers to 
form atop the old ones. The cyanobacteria are protected from the ultraviolet rays of the sun by the thick mucus 
coating in which they live. This image shows what fossilized stromatolite mounds look like. Today, 
photosynthesis is primarily oxygenic: producing oxygen as a waste product. However, the earliest form of 
photosynthesis was not an oxygen-producing one.  
 
Why does the evolution of oxygenic photosynthesis matter? Advanced life can evolve only in the presence of 
large amounts of atmospheric oxygen, and oxygenic photosynthesis is the dominant natural process at work on 
Earth that produces that oxygen. What evidence would we look for to tell us oxygenic photosynthesis had 
evolved? Minerals such as manganese or iron oxides that form through chemical reactions between oxygen gas 
and either dissolved metals in the oceans or metals in weathering surface rocks on land. While as far back as 3.23 
billion years ago there appear to be small localized precipitations of iron oxide minerals on the seafloor, now 
visible in layered rocks known as Banded Iron Formations, additional evidence  suggests those were formed as a 
byproduct of anoxygenic photosynthesis by bacteria that used iron as an electron donor.  
 
However, the largest known deposit of banded iron formations have been determined to be due to a large scale 
release of oxygen by photosynthetic stromatolite colonies. These deposits are about 2.5 billion years old and can 
be found today in the Pilbara region of Western Australia. These rock layers are now the source of the world’s 
largest iron ore mines. Here are two samples from the Pilbara Desert, Australia. On the left you see small 
fossilized stromatolites (the oxygen producers) and next to it the banded iron.  
 
Once the majority of the dissolved iron in the oceans was removed through iron oxide precipitation, or “rusting”, 
oxygen was free to mix through the oceans and bubble up and enter the atmosphere, where it became available 
for the oxidation of amospheric gases and dissolved metals in weathering surface rocks and rivers and lakes. The 
oldest evidence we find of this activity and thus oxygen gas accumulating in our atmosphere are from the north 
shore of Lake Huron, Ontario, Canada: Red Beds (iron-oxide-rich rocks formed on Earth’s surface) dated between 
2.2 and 2.4 billion years old.  
 
We call this period of time, about 2.3 billion years ago, when oxygen gas began to accumulate in the atmosphere 
for the first time in amounts as large as 1% of current values, the Great Oxygenation Event. It was over 1 billion 
years later before another large oxygen-increase event brought oxygen levels up to today’s levels. It took that long 
for the oxygen to complete its chemical reactions with other atmospheric gases and dissolved metals on Earth’s 
surface. After that work was done, oxygen gas could begin to accumulate  in amounts necessary to support more 
advanced life. 
 
Pause now. 
 
The first step towards that advanced life was developing a nucleus and sexual reproduction. The oldest evidence 
we have of this evolution are fossils of Grypania spiralis – found in 2.1-billion-year-old banded-iron formations in 
Michigan. However, it was quite a long time before organisms like these really proliferated and cooperated to 
create multicelled life, because it had to wait until the oxygen levels in the atmosphere built up enough to support 
the increased metabolism that goes along with multicelled life. The stromatolites and other photosynthesizing 
bacteria still had a lot of work to do. How much work? The oldest evidence of multicelled life was discovered in 
fossils of soft-bodied marine organisms in 600-million-year old rocks in the Ediacaran Hills of Australia. That’s 4 
billion years after Earth formed, and in the last 1/9 of Earth’s history. 
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After oxygen levels rose to current levels and multicelled life evolved, evolution really took off. 544 million years 
ago, we see the first evidence of hard parts, thus contributing to many orders of magnitude more fossils forming 
as hard parts make fossilization much easier. It was also the beginning the Age of the Trilobites – crab-like 
animals with exoskeletons that scuttled across the seafloor. Ammonites came next, a nautilus-like cephalopod -- 
imagine a giant octopus-like organism living in an ornate hard shell and floating at various depths within the 
water column. The first vertebrates – jawless fish with cartilaginous skeletons – evolved about 520 million years 
ago. Again, the evidence for this timeline comes from fossils we find in rocks that we date through radiometric 
dating. Watch the video tutorial on radiometric dating for more information on that process. 
 
438 million years ago is our first evidence we have of organisms moving onto land – including the first plants and 
insects.  
 
245 million years ago was the largest mass extinction on the planet, during which the trilobites and many other 
early forms of life went extinct. Dinosaurs evolved soon after and dominated the planet during the Age of the 
Dinosaurs, which lasted from 230 to 65 million years ago. 
 
Early mammals co-existed with the dinosaurs, but after the dinosaurs went extinct, 65 million years ago, 
mammals continued to evolve to fill the now-empty niches left behind by the dinosaurs. 
 
50 million years ago, some land mammals returned to the ocean, evolving into whales, sea lions, seals, and other 
marine mammals. 
 
The earliest monkeys and apes evolved 40 million years ago. 
 
And the oldest evidence we have of early bipedal hominids is 4 million years ago. 
 
2 million years ago we began the period of cyclical ice ages that we are coming out of today. The last ice age 
ended only 20,000 years ago. 
 
Pause now. 
 
Understanding the magnitude and scale of Earth’s history is a challenging task for organisms that live only on 
average 75 years and that are primarily focused on events that happened in the last week or month. But it’s a 
challenge that must be tackled if we want to understand the important processes that created the world around 
us and continue to shape it today. 
 
 [end credits] 
 
Earth Formation Series: 
Part I: Earth Formation 
Part II: Radiometric Dating 
Part III: Density 
Part IV: Early Earth 
Part V: Life on Earth 
 

Life on Earth 
Produced by Katryn Wiese 

City College of San Francisco 
 

Copyright: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 
 
All media produced by Katryn Wiese unless indicated below: 
*Intro and exit music: used with permission (c) Alexis Harte (www.alexisharte.com) 



  
 

4 

*Rain on water: CC-BY-SA 2.0. Issy Witcomb 
*Archaebacteria: Single image: Methanosarcina thermophila. Set of 4 vent bacteria: micrograph. Both images: © 
Stephen H. Zinder, Cornell University Department of Microbiology. NOAA 
*Hydrothermal vent - black smokers and sulfur-mineralized vents (2 images): Public Domain. NOAA 
*South African Gold Mine: ~2 miles below the ground - Duane Moser next to fracture zone (white area) where 
one-of-a-kind bacteria were found:  © Li-Hung Lin. 
*Cueva de Villa Luz Snottites (Tabasco, Mexico): Snottite cluster in Snot Heaven. © Kenneth Ingham, used with 
permission, http://keninghamphoto.com 
*Transmission electron micrograph of Thermus bacteria isolated from Witswatersand gold mine. © Hailiang 
Dong and Gordon Southam at Northern Arizona University. 
*Columbia River Basalt Bacteria: Public Domain. NASA. 
*Indian Ocean Basalt: Public Domain. NOAA/OER. 
*Cueva de Villa Luz Acid Pool: © Getty/National Geographic. 
*Urey-Miller Experiment: GFDL, CC-BY-SA: Attribution: A. Knoll 
*Amino Acid structure: Public Domain 
*Jack Hills Zircon: © John Valley, University of Wisconsin. 
*Greenland map: Google Earth. Imagery © 2017 Data SIO, NOAA, US Navy, NGA, GEBCO, IBCAO, 
Landsat/Copernicus, USGS. 
*Stromatolite Fossils from Greenland, 3.7 Ga, A. Nutman et al./Nature ©. 
*Stromatolite formation cartoon, author unknown. Embedded fossil cyanobacteria filament: J. William Schopf ©. 
*Stromatolite fossil from Houston Museum of Natural History: CC-0-1.0 Universal Public Domain. 
*Map of Huronian Supergroup: Ohio State Govt. Website.  
*Gripania spiralis fossils: 3 images: Negaunee Fe-FM, Empire Mine, Marquette Co UP Michigan, CC BY 2.0. 
Attribution: James St. John. 
*Ediacaran fossils: Dickensonia costata, CC-BY-SA 3.0 Attribution: Verisimilus. Spiggina floundensi, CC BY 2.5, 
Attribution: Merikanto; http://www.ga.gov.au/ausgeonews/ausgeonews200512/timescales.jsp 
*Ediacaran Hills map of Australia – Australian Government. 
*Trilobite cartoon: Public Domain. Original Author: 1916, The Wonderful Paleo Art of Heinrich Harder 
*Lampreys: author unknown. 
*Pikaia gracilens: from the Burgess Shale on display at the Smithsonian in Washington, DC. Public Domain. 
*Meganeura. CC-BY-NC-ND Muséum de Toulouse. 
*Life Moves Onto Land Mural - on display in Story of Time and Life Exhibit, City College of San Francisco. 
Artists: Maren Van Duyn, Caroly Van Duyn (1990). Photo by K. Wiese. 
*Early mammal, Jugulator amplissimus, CC BY SA 4.0. Attribution: Julio Lacerda. 
*Feeding humpback whales. Public Domain. Attribution: Evadb.  
*Manatee: CC-BY-2.0. Attribution: Keith Ramos, US Fish and Wildlife Service. 
*Early Apes: The common chimpanzee (Pan troglodytes) Creative Commons / Böhringer.  
*Early Hominids: 3 images from display in the Hall of Human Origins at Smithsonian Institution. Illustration of 
Homo erectus group: Artist John Gurche. http://humanorigins.si.edu. Australopithecus afarensis - CC BY SA 3.0 
Photo by Nachosan 
*Ice age graph: Public Domain. NOAA.  
*Agassiz Ice Cap: CC BY SA 3.0. Paul Gierszewski 
 


