Radioactive Decay Worksheet

Alpha decay: nucleus spontaneously emits an alpha particle (symbol: α particle), which is 2 p+ and 2 n (or also the same as a Helium (He) atom).

Result: atomic number decreases by 2 (lost 2 p+)

Result: atomic mass decreases by 4 (lost 2 p+ and 2n = 4 amu)

Beta decay: neutron in nucleus spontaneously emits a beta particle (symbol: β particle), which is essentially an electron trapped in a neutron. The neutron, therefore, turns itself into a proton.

Result: atomic number increases by 1 (gained 1 p+)

Result: atomic mass stays same (no mass lost or gained: β particle or electrons have no mass)

Beta or electron capture: proton in nucleus captures a beta particle (symbol: β particle), which is essentially an electron that can become part of a neutron. The proton, therefore, turns itself into a neutron.

Result: atomic number decreases by 1 (lost 1 p+)

Result: atomic mass stays same (no mass lost or gained: β particle or electrons have no mass)

Example

Original	alpha decay	beta decay	alpha decay	beta capture	beta decay	alpha decay
85	83	84	82	81	82	80
At	Bi	Ро	Pb	T1	Pb	Hg
Astatine	Bismuth	Polonium	Lead	Thallium	Lead	Mercury
210	206	206	202	202	202	198

Complete this table

Original	beta decay	alpha decay	beta capture	alpha decay	alpha decay	beta decay
90						
Th						
Thorium						
232						

Complete this table

Original	beta capture	alpha decay	alpha decay	beta capture	alpha decay	beta decay
92						
U						
Uranium						
238						

Radiometric Dating Worksheet

When radioactive isotopes (parent – P) decay, they produce daughter products (D) at a constant rate, called the half-life (**T**). Example: if we start with 100 atoms of the parent, after one half-life, there will be 50 parent atoms remaining and 50 daughter atoms newly made. After another half-life (two half-lives), there will be 25 parent atoms remaining and now 75 daughter atoms. Each parent-daughter isotope pair has its own half-life. To achieve the above example with U-238 takes 9 billion years (two half-lives). To achieve the above example with C-14 takes 11400 years (two half-lives). In the geologic environment, we use a mass spectrometer to count the number of Parent and Daughter atoms in a closed-system (like minerals crystallizing from magmas), and use the relative proportions to find out how old the closed-system is.

1. Assuming we start with only parent isotopes (no daughter), after one half-life has passed, there should be ½ parent remaining and ½ daughter newly formed. The ratio of P:D is ½ : ½ or 1:1. Complete the rest of this table, as in the first example:

# Halflives	Fraction of original Parent remaining	Fraction of original parent turned into daughter	Parent:Daughter ratio
1	1/2	1/2	1:1
2			
3			
4			
5			
6			

Not all rocks can be dated radiometrically. Some because they cannot maintain closed systems (like metamorphic rocks); others because they do not contain radioactive isotopes (like quartz sandstones); and finally some because the radioactive isotopes that they do contain have half-lives that are either too long or too short to be measured for a rock of a certain age (like trying to date a 1 m.y.-old rock by using C-14 decay – which would have been completely decayed after about 150,000 years).

Parent (P)	Daughter (D)	Half-lives (T _{1/2})	Materials dated
U-238	Pb-206	4.5 x 10 ⁹ yr	Zircon (igneous rocks - source; and sedimentary rocks as
			grains)
U-235	Pb-207	0.7 x 10 ⁹ yr	Zircon (igneous rocks - source; and sedimentary rocks as
			grains)
K-40	Ar-40	1.4 x 10 ⁹ yr	Micas, volcanic rock (igneous rocks)
C-14	N-14	5700 yr	Shells, limestone, organic materials

- 2. To date the age of a shell found in an old Indian fishing village, which isotope pair would you measure? Why?
- 3. If you want to date a meteorite, which isotope pair would you measure? Why?
- 4. If you want to date lava flows on an old lava flow on Kauai (probably about 8 m.y.), which isotope pair would you measure? Why?
- 5. If you want to date zircon crystals in ancient sandstones in Australia, which isotope pair would you measure? Why?

- 6. If the C-14:N-14 ratio in a shell in a sandstone was found to be 1:3, how old is the shell?
- 7. If the U-235:Pb-207 ratio in a zircon in a sandstone was found to be 1:3, how old is the zircon?
- 8. If the K-40:Ar-40 ratio in a zircon in a granite was found to be 1:1, how old is the sample?
- 9. If the U-238:Pb-206 ratio in a zircon in a lava flow was found to be 3:1, how old is the flow?

T (# of)	Fraction		
Halflives	Parent	Daughter	Ratio
0	1	0	infinity:1
0.0227	63/64	1/64	63:1
0.0458	31/32	1/32	31:1
0.0931	15/16	1/16	15:1
0.1927	7/8	1/8	7:1
0.4151	3/4	1/4	3:1
1.0000	1/2	1/2	1:1
2.0000	1/4	3/4	1:3
3.0000	1/8	7/8	1:7
4.0000	1/16	15/16	1:15
5.0000	1/32	31/32	1:31
6.0000	1/64	63/64	1:63

CURVE EQUATION: T = -1.443ln(f) f = fraction of parent left; T = # of half lives that have passed