Due Date: February 11, 2010

Reading Assignment:

Jones \& Lambourne: Chapter 1: The Milky Way

Problems:

1. The mean densities of stars can vary by enormous factors. For purposes of illustration, calculate the mean densities for each of the following:
a). the Sun,
b). the supergiant star Betelgeuse, with a mass of $10 \Re_{\odot}$ and a radius of $300 \mathcal{R}_{\odot}$, c). a $1.4 \Re_{\odot}$ white dwarf, with a radius of $5 \times 10^{7} \mathrm{~m}$, and d). a $1.4 \mathscr{F}_{\odot}$ neutron star, with a radius of $2 \times 10^{4} \mathrm{~m}$.
2. Mass Profile $M(r)$, Density Profile $\rho(r)$, and Velocity Profile $v(r)$:

Use the Virial Mass Estimate formula derived in class [Equation 1.4 \& 1.5] to derive density profile and velocity profile of the system for the following cases:
a). $M(r)=$ Constant. $=M$, indicating as a mass point. In this case, further show that the velocity profile implies Kepler's 3rd Law,
b). $M(r)$ decreases as $1 / r$,
c). $M(r)$ increases linearly with r,
d). $M(r)$ increases as r^{2}, and
e). $M(r)$ increases as r^{3}
3. Apply the Virial Theorem to derive the Virial Mass M in solar mass unit enclosed in a volume with radius r in kpc unit with a test particle with mass m and orbital velocity of v in $\mathbf{k m} / \mathbf{s}$ unit. Apply the Virial Mass formula and estimate the mass of the Milky Way galaxy in solar masses at a distance of 15 kpc from the center where a faint star with orbital velocity of $230 \mathrm{~km} / \mathrm{s}$ is detected. [Hint: Gravitational Binding Energy, page 106.]
4. You are to make use of observational data in order to make a table of the luminosities, surface temperatures, radii, and mean densities of main-sequence stars of $50,1.0$, and 0.1 solar masses. Show your calculations, or, at least, examples of your calculations.
a). With the aid of the mass-luminosity relation $\left(L / L_{\odot}\right)=\left(M / M_{\odot}\right)^{3}$ and the Hertzsprung-Russell diagram, tabulate the luminosities (in units of the solar luminosity) and surface temperatures of stars of $50,1.0$, and 0.1 solar masses. b). With the aid of Stefan-Boltzmann law, $L=4 \pi R^{2} \sigma T^{4}$, determine the radii (in units of solar radius) of stars of $50,1.0,0.1$ solar masses.
c). Calculate the mean densities of stars of the three masses in $\mathrm{kg} / \mathrm{m}^{3}$.
d). In a simple sentence, describe the qualitative relationship between the mass and mean density of a star that is indicated by your results. (In other words, what is the trend in the variation of the mean densities of stars with their masses?

Optional Bonus Problem:

This problem is concerned with the simple derivation of Kepler's Law:

$$
m_{1}+m_{2}=\frac{4 \pi^{2}}{G} \frac{R^{3}}{P^{2}}
$$

a). Draw a picture of two stars rotating around the center of mass, so $m_{1} r_{1}=m_{2} r_{2}$. b). Equate the central force on star 1 to the gravitational force between the stars. The force acts over a distance of $R=r_{1}+r_{2}$.
c). Noting that both stars have the same orbital period, $P=P_{1}=P_{2}=\frac{2 \pi r_{1}}{v_{1}}=$ $\frac{2 \pi r_{2}}{v_{2}}$, solve for v_{l} in terms of P and r_{l}. Substitute for v_{l} in part (b).
d). Note that $R=r_{1}\left(1+\frac{r_{2}}{r_{1}}\right)$.
e). Now solve for r_{2} / r_{1} from the center of mass definition, in terms of m_{l} and m_{2}, and substitute for r_{2} / r_{1} in part (d) with the relevant mass ratio. Solve for r_{1} in terms of R, m_{1}, and m_{2}.
f). Group constants and R on one side, and terms in m and P on the other. Note that $m_{1}+m_{2} \equiv \mathfrak{\Re}$.

