Project Note # 4: A Detection Model

The following is an example of calculating the exposure time required to detect a supernova with V < 18 with a 12-inch Schmidt-Cassegrain f/10 telescope and using a CCD camera (800 x 800 pixel-squared). This is called a **detection model**.

The quantitative description of the criteria for detection is the estimation of the **signal-to-noise ratio** ($\langle SNR \rangle$) of the signal (i.e. the total amount of photons from the supernova as compare to the background photons from the sky). A $\langle SNR \rangle$ of 3 - 5 will usually constitute a detection.

The following is a "standard" model to estimate the signal <S>:

$$<\!\!S\!\!> = F_\lambda \Delta \lambda \ T \ A \ \epsilon \ q \ t_{exp} \quad [photons],$$

where

F_{λ}	= flux of the supernova in photons / cm^2 / sec / Angstrom
$\Delta\lambda$	= bandwidth of the filter in Angstrom (=880 Angstrom for V band)
Т	= atmosphere transmission (between 0 to 1, $0 =$ no transmission and $1 =$
	complete transmission. In the V-band window it is about 0.7)
А	= effective collecting area of the primary mirror in cm^2 (e.g. a 12-
	inch Schmidt-Cassegrain telescope will have an effective area of 0.9 x π (6
	$x (2.54)^2 \text{ cm}^2 = 657 \text{ cm}^2$
ε	= efficiency of the optical system (each optical element, such as a mirror
	is about 90% efficient in reflecting photons, typically, we will have 5
	elements $=> 0.9 \ge 0.9 \ge 0.9 \ge 0.9 \ge 0.9 \ge 0.6$
q	= quantum efficiency of the CCD camera (0.5 in V-band)
t _{exp}	= exposure time in seconds

and the noise <N>:

 $<N> = [<S> + 2 \}^{1/2}$, where = background photons from sky

 $<\!\!B\!\!> = f_\lambda\,\theta^2\Delta\lambda\;T\;A\;\epsilon\;q\;t_{exp}$

- f_{λ} = surface brightness of the sky in photons / cm² / sec / Angstrom / arcsecond²
- θ^2 = angular area of sky that contributes to the background in arcsecond²

<S> and reduce to:

$$<\!\!S\!\!> = 121413.6 \; F_\lambda t_{exp} \qquad \text{and} \qquad <\!\!B\!\!> = 121413.6 \; f_\lambda \, \theta^2 t_{exp} \; .$$

Next, we will estimate the flux from a supernova with V = 18 and the surface brightness of the sky. An object with V = 0 has a flux of 1000 photons / cm^2 / sec / Angstrom. Thus, V = 18 will have a flux of 6.31 x 10⁻⁵ photons / cm^2 / sec / Angstrom (using the relationship between magnitude and flux). Therefore, $\langle S \rangle = 7.66 t_{exp}$ [photons].

We then proceed to estimate the flux due to the night sky. In Chicago, the surface brightness of night sky is about 18 mag/ arcsecond²; this is equal to 6.31 x 10⁻⁵ photons / cm² / sec / Angstrom / arcsecond². The flux due to the night sky is the product of the surface brightness of the night sky and the angular area ($f_{\lambda} \theta^2$). Since we are measuring point source the angular area from the sky that contributes to noise is comparable to the seeing , about 2 arcsecond. Thus, the angular area is about 3.2 arcsecond². Therefore, the flux due to night sky is 2.03 x 10⁻⁴ photons / cm² / sec / Angstrom, and = 24.5 t_{exp} [photons].

Finally, we get the *<*SNR*>* :

<SNR> = <S> / <N> = 1.02 [t_{exp}]^{1/2}

Thus, for detection level set at $\langle SNR \rangle = 5$, we need about 25 seconds of integration time with the CCD camera. However, if we want a reasonable photometry for the supernova, we need at least a $\langle SNR \rangle > 25$. This implies we need to have at least 10 minutes of integration time.