The structure of the shoulder complex makes it susceptible to injury during throwing, particularly when throwing in a fatigued state. This presentation covers mechanical factors related to the overhead throw, and touches on some implications for causes of chronic shoulder pain as well as suggested precautions.
Review of Gross Structure (name bones & muscles)

- **Bones**: scapula; clavicle; humerus
- **Joints**: glenohumeral; scapulothoracic; acromioclavicular; sternoclavicular
- **Rotator Cuff muscles** provide dynamic stability to the joint via mainly compressive forces.
Glenohumeral Joint -- ball & socket configuration allows three-dimensional mobility

- shallowness of the glenoid fossa and large humeral head aid mobility at the expense of stability
- vacuum effect assisted by the glenoid labrum, balance of muscular forces & joint fluid provides stability
- surrounding joint capsule and ligaments provide static stability
- surrounding muscles provide dynamic stability

Acromioclavicular and Sternoclavicular Joints: stabilized primarily through ligaments

Acromial Arch (acromion and coracoacromial ligament): inhibits upward movement of the humeral head

Throwing issues, as we’ll see later, arise due to instability of the glenohumeral joint
Some conventions for describing shoulder movements and position with influence on the throwing motion:

- Flexion / Extension
- Internal / External Rotation
- Horizontal Abduction/Adduction

- **Wind-up**: ends at knee up
- **Stride**: ends at foot contact
- **Arm Cocking**: ends at maximum external rotation
 - Critical instant - maximum internal Torque occurs during this phase
 - Max External Rotation $150^\circ - 210^\circ$
- **Arm Acceleration**: ends after release
- **Arm Deceleration**: ends after maximum internal rotation
 - Critical instant - max compressive force
- **Follow-through**
Generally, most shoulder pain in pitchers and other overhand throwing athletes is related to humeral head distraction, usually anterior translation. Distraction can be attributed largely to tensile failure of the supporting musculature (rotator cuff - mid inferior area of supraspinatus most common - and biceps brachii).

This failure is caused by fatigue due to high loads. Excessive external rotation during cocking -> increased eccentric loads on rotator cuff -> fatigue -> increased demand on the Inferior Glenohumeral ligament, the primary constraint to external rotation in abduction. Rotator cuff compresses humeral head in cavity for additional support. As rotator cuff fatigues, it exerts less control, increasing ligament loads.

Role of biceps: provides elbow flexion torque and glenohumeral compression. Max elbow flexion torque must occur early enough before compression or it will be required to exert a higher maximum force. Biceps fatigue can strain the ligament structures.
Anatomical Issue
Humeral Head Distraction

Effects

- Tearing
- Grinding
- “Pinching”
- Soft Tissue Strain

Distraction Force > 100% body weight may put rotator cuff and labrum at risk
Repetitive Trauma -> chronic pain
 - Tearing: compressive force from translation, joint laxity & high (380 N) anterior force during cocking.
 - Grinding: rapid internal rotation with above.
 - Labrum “trapped” between humeral head and glenoid rim (acute)
 - Soft tissue strain: strain of gh joint restraints concurrent with humeral head subluxation
Kinematics and Kinetics

Two Critical Instants

Factors Relating to Shoulder Distraction

- Internal rotation torque during cocking
- Compressive force during deceleration

Internal rotation torque during cocking
- least stable in abduction combined with external rotation
- shoulder position @ max ext rotation (184 ± 14°): greater external rotation
- high peak external rotation & abduction torques

Compressive force during arm deceleration
- posterior & compressive forces resist distraction (biceps)
- horizontal abduction torque resists horizontal adduction
- external rotatory torque resists internal rotation

Changes in throwing mechanics during a game session (Barrentine et al)
- @ foot contact: +5° abduction; +5° horizontal adduction; +8° external rotation
- arm cocking and acceleration: -4° external rotation;
- @ release: -4° abduction
Applications

Max Throws/Game

<table>
<thead>
<tr>
<th>AGE</th>
<th>MAX / GAME</th>
<th>GAMES / WK</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td>52 ± 15</td>
<td>2 ± 0.6</td>
</tr>
<tr>
<td>11-12</td>
<td>68 ± 18</td>
<td>2 ± 0.5</td>
</tr>
<tr>
<td>13-14</td>
<td>76 ± 16</td>
<td>2 ± 0.4</td>
</tr>
<tr>
<td>15-16</td>
<td>91 ± 16</td>
<td>2 ± 0.4</td>
</tr>
<tr>
<td>17-18</td>
<td>106 ± 16</td>
<td>2 ± 0.6</td>
</tr>
</tbody>
</table>

Recommended Rest for Min Throws

<table>
<thead>
<tr>
<th>AGE</th>
<th>1 DAY REST</th>
<th>2 DAY REST</th>
<th>3 DAY REST</th>
<th>4 DAY REST</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-10</td>
<td>21 ± 18</td>
<td>34 ± 16</td>
<td>43 ± 16</td>
<td>51 ± 19</td>
</tr>
<tr>
<td>11-12</td>
<td>27 ± 20</td>
<td>35 ± 20</td>
<td>55 ± 23</td>
<td>58 ± 18</td>
</tr>
<tr>
<td>13-14</td>
<td>30 ± 22</td>
<td>36 ± 21</td>
<td>56 ± 20</td>
<td>70 ± 20</td>
</tr>
<tr>
<td>15-16</td>
<td>25 ± 20</td>
<td>38 ± 23</td>
<td>62 ± 23</td>
<td>77 ± 20</td>
</tr>
<tr>
<td>17-18</td>
<td>27 ± 22</td>
<td>45 ± 25</td>
<td>62 ± 21</td>
<td>89 ± 22</td>
</tr>
</tbody>
</table>
Applications

Recommended Ages for Learning Various Pitches

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastball</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>Change-Up</td>
<td>10 ± 3</td>
</tr>
<tr>
<td>Curve ball</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>Knuckle ball</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>Slider</td>
<td>16 ± 2</td>
</tr>
<tr>
<td>Fork ball</td>
<td>16 ± 2</td>
</tr>
<tr>
<td>Screw ball</td>
<td>17 ± 2</td>
</tr>
</tbody>
</table>
Applications

Cues

• Glenohumeral internal rotation deficit in those with impingement.
• Higher maximum external rotation associated with injury/pain,

Internal rotation: throwing shoulder -8.5° in normal pitchers.
Applications

Prevention

Appropriate Conditioning & Training

• Conditioning
 • Muscular & General Endurance
 • Muscular Strength
 • Range of Motion

• Training
 • Teach proper throwing mechanics
 • Keep age-related progression in mind
 • Don't throw to fatigue

Specific Conditioning
- Shoulder exercises
-
Muscular imbalance can create uneven or unintended stress on articulations and bones. An appropriate conditioning program can be designed to correct it. If the individual doesn't respond to "fixes," the imbalance may be due to the formation of the body's bony structures. If so, it's possible tampering with them could cause damage.
Prevention
Scan for Static Soft Tissue Imbalance

- Frontal/Posterior Views
 - Inversion/Eversion
 - Internal/External rotation
 - Valgus/Varus (often structural)
 - Iliac Levelness (often structural)
- Sagittal View - Plumb Line Passes Through:
 - Ankle: anterior aspect of malleolus
 - Knee: posterior aspect of patella
 - Hip: femoral head & iliac crest
 - Shoulder: through glenohumeral joint
 - Head: behind top of ear

Name exercises for
- inversion/eversion
- internal/external rotation
- pelvic tilt downward/upward
- hyperkyphosis

