Vocabulary

base table (usually referred to just as a table) – a table that stores data values. These are tables that are physically stored in the db.
bridge/relationship/junction/intersection table - a table that establishes a many to many relationship between two other tables. (It is a base table.)
virtual table – the return set of a query or view. It looks like a table and can be used as a table in another query or view.

query or view – a view of the data in a database containing only the information that one user requires. In Access it is the result of a query, (i.e. a virtual table). In an Access Project, it is called a view. It can be used as a table for other queries. It can be updateable or not.

Codd’s Rules – a set of rules for a database to be considered “Relational”.
relation – a table in a relational database that meets 6 requirements: (1)attributes are single-valued, (2) each column has a distinct name, (3) all the values in a column are values of the same attribute, (4) the order of columns is irrelevant, (5) each row is distinct and (6) the order of rows is irrelevant.

unnormalized relation – meets requirements (2)-(6): not (1) that says that the entries in the table are single-valued.

attribute – a column of a table, a characteristic of an entity. Also called field.

tuple – a row or record of a table.

entity - Can mean entity class, entity occurrence or entity set. It is something that you want to keep track of in a database. Examples are students, teachers, classes, grades, classrooms, etc.
entity class (aka relvar - relation variable) – a description of all possible records for a relation. It is the table description. (i.e. the column names and datatypes, etc. – In Access it is the design view of a table.)

[image: image1]
 an entity class

two entity instances

entity occurrence (aka entity instance) - A row in a table. A set of data about a specific entity. It gives the values of the attributes of an entity.
entity set (aka relation) – records we have in the relation right now, the values in the table right now.

(In Access it is the datasheet view of the table.)
The idea here is that many of the terms we use are rather vague and can have multiple meanings. So the word "relation" could be used to refer to the actual collection of records that is in a table at this time. Since records get added and deleted, the collection of records is similar to the value of a variable in a programming language. It changes while you are using the database.

But the word "relation" could also be used to refer to the concept of the table - its description. This could be expressed as the column names and domains (or data types). This concept would not change during the normal life of a table. Once you have designed the database you do not commonly add or deleted columns from tables. So this is like a variable in a programming language (as opposed to the value of a variable). This meaning of relation is called the relvar. (relation-variable)

identifier - An attribute that names or identifies an entity instance.

domain – description of all possible values of an attribute.

relationship – linkage or association between two tables on fields in each table that have common values. (So the fields must be of the same data type.)

relationship classes – associations between entity classes.

relationship instances – associations between entity instances.
candidate key – any column (or collection of columns) on which all columns in the table are functionally dependent and no sub-collection of columns has this property.

primary key – we picked this one from the list of candidate keys. (Some people will just say “key”.)

alternate keys – any column (or collection of columns) that could have been chosen from the candidate keys as the primary key, but was not.

determinant – any column (or collection of columns) that functionally determines another.

nonkey attribute – a column that is not part of the PK.

index (secondary key) – used to identify fields that will be retrieved and sorted frequently.

surrogate key – a made up field to serve as a PK if the table doesn’t have a naturally occurring field that meets the criteria necessary for a PK.

composite key – any key made up of more than one attribute.
foreign key – a field in a child table that must match a field in the parent table or be null.

maximum cardinality - the maximum number of entities that can be involved in the relationship.
minimum cardinality - is the minimum number of entities that are involved in the relationship. For example does a locker have to be related to an Employee? Does an Employee have to have a locker?

degree of relationship - the number of entity classes in a relationship.

binary relationships – the number of entity classes in the relationship is 2.

recursive relationship – a relationship among entities of the same entity class. In other words, it is a relationship of a table to itself. Recursive relationships, like other relationships, can be 1-to-1, 1-to-many and many-to-many.
For example employees have managers who are also employees. So the relationship of an employee to her manager is really a relationship between one employee and another. The employee table for a company might include an attribute of the employee that is the employee’s manager. This example would be a 1-to-many recursive relationship. (A manager can have many employees but an employee only has one manager.)

weak entity – those entities that cannot exist in a db unless another type of entity also exists in the db. This can be the result of the entity being existence dependent or it can result from a business rule. In either case it will have a minimum cardinality of 1 with the entity on which it depends.

strong entity - those that can exist in a db regardless of the existence of another entity.
existence-dependant entity – an entity in which the existence is logically dependent on another entity.
Note: Some professionals differ a bit on the definition of weak and strong entities. Our book’s author defines a weak entity as one that logically depends on another entity. In other words, a weak entity is one that is existence dependent. So an entity that is not existence dependent but has a requirement from a business rule that it can only exist if another entity exists, is not considered weak.
ID-dependent entity - an entity in which the identifier includes the identifier of another entity.
data model - a representation of the content, relationship, and constraints of the data needed to support the requirements.

data modeling - is a technique for representing database requirements. Usually in the form of standardized diagrams.
Entity-Relationship Diagram – A diagram that reflects the popular data model of the same name. It shows the entities, attributes, identifies and relationships of the data in a (somewhat) standard form.

Unified Modeling Language (UML) - is a set of structures and techniques for modeling and designing object-oriented programs (OOP) and applications. It is a subject for systems development.

UML-style E-R diagram - another modeling technique which uses slightly different notation from the traditional E-R diagram.

validation rule – can be for a table or a column. It is a rule that is established to restrict the values in a column or columns.

validation table – a look-up table. It is the parent in a one-to-many relationship. For instance State abbreviations can be listed in a look up table.

integrity constraints – rules that ensure that the data in the database follow specific rules. Two examples are referential integrity and entity integrity.

Referential Integrity – if I have two tables with a relationship between them, then a related field, a child record can be null or match the associated field in the parent record.

entity Integrity – no null PK or no null parts of a composite PK

domain integrity – every attribute should have a defined domain. Part of this involves setting the datatype and validation rules.

functional dependency - a column B is functionally dependant on another column, A (or a collection of columns) if a value for A determines a single value for B at any one time.

It is symbolized by
A (B.

You say, “B is functionally dependant on A” or, “A functionally determines B.”

To figure out if a column is functionally dependant on another, you must examine the user’s policies, not just look at the values in the tables.
multivalued dependency - In a table with columns A, B, and C, “B is multidependant on A” (or “A multidetermines B”) if each value for A is associated with a specific collection of values for B and this is independent of any values for C.

It is symbolized by A ((B

catalog – a collection of tables that carries the definitions of the database. In other words, the metadata. You can use queries to examine the tables in the catalog. (To show these system tables, go to the Tools menu, Options and on the View Tab you can check the boxes to show hidden objects and system objects. This will show the tables and objects that are in the catalogue in the database window.)
anomalies - A bad design can cause problems called anomalies. Anomalies are errors that get introduced into a table as a result of a user attempting to modify, insert or delete data.
1. update anomaly – A change of an attribute requires not one change, but several. It makes the update process more cumbersome and time-consuming. It can also result in inconsistent data since a change of an attribute may result in having two different values in the database.

2. insertion (or addition) anomaly – Addition of an entity occurrence requires more information than you might have. This occurs because a single record has information about multiple entities.

3. deletion anomaly – Deletions of a record might result in the loss of information that you need.

The Normalization Process – a set of steps that ensure that your table designs avoid anomalies. When they do they are considered to be “well formed” tables. The process involves converting the tables into “Normal Forms”. Each Normal Form satisfies the requirements of the one before it (except DK/NF) and some additional criteria.
· First Normal Form
· Second Normal Form
· Third Normal Form
· BCNF – Boyce-Codd Normal Form
· Fourth Normal Form
· 5NF
· DKNF – Domain Key Normal Form

First Normal Form

A table is in the first normal form if it meets the definition of a relation.

To convert an unnormalized relation into the first normal form:

Create a new relation with PK made up of a composite of the PK of the original table with the PK of the repeating group.

Second Normal Form

A table is in the second normal form if

· it is in the first normal form, and

· if no nonkey attribute is dependent on only a portion of the PK.

In other words, there are no partial dependencies.

Note: If the PK is only one column, the table is automatically in the 2NF.

To convert a table into the second normal form:

· Take each subset of the set of columns that make up the PK and begin a new table with this subset as its PK.

· Put the columns that are determined by each subset into the table with that subset as its PK.

Third Normal Form

A table is in the third normal form if

· it is in the second normal form, and

· the only determinants it contains are candidate keys.

To convert a table into the third normal form:

· For each determinant that is not a candidate key, remove from the table the columns that depend on this determinant (but don’t remove the determinant).

· Create a new table containing all the columns from the original table that depend on this determinant. Make the determinant the PK of the new table.

A nice way to remember the first 3 NFs
The attributes of a relation must depend on

· the PK (1NF)

· the whole PK (2NF)

· and nothing but the PK (3NF)

Fourth Normal Form

A table is in the fourth normal form if

· it is in the third normal form, and

· there are no multivalued dependencies.

To convert a table into the fourth normal form:

· split the table into separate tables, each containing the column that multidetermines the others.

To avoid the problem from the beginning, when you convert to 1NF, if there are more than one repeating groups, place each separate repeating group in a separate table. Each table will contain all the columns that make up the given repeating group, as well as the PK to the original unnormalized table. The PK to each new table will be the concatenation of the PK of the original table and the PK to the repeating group. These still need to be converted to 2NF and 3NF but you are guaranteed that they will be in 4NF

Note about DKNF
The DKNF evolved somewhat differently than the other NFs. Instead of chipping away at anomalies, R. Fagin in 1981 looked for conditions that would have to exist in order for a relation to have no anomalies at all. He came up with the domain/key normal form (DK/NF). He proved that a relation in DK/NF can have no anomalies and conversely, if a relation has no anomalies, it is in the DKNF.

DK/NF requires that all of the constraints on data values be logical implications of the definition of domains and keys. To the level of detail experienced by 99% of database practitioners, this can be restated as: Every determinant of a functional dependency must be a CK.

Considerations for Table Design

· Entities

· Attributes

· Indexes

· Domains

· Datatypes

· Validation Rules

· Default Values

· Nulls allowed

· Zero-length strings allowed

· Captions – this property will mess up your SQL but they make tables pretty

· Relationships

· Relationship Properties – RI enforced? Cascade Update? Cascade Delete?
· Documenting the table design
1100

100 amp panel

$127.50

$170.00

14

2000

Door handle set

$52.50

$39.38

0

ITEM

ItemNumber

Description

Cost

ListPrice

QuantityOnHand

