ENGN 38
Introduction to Computing for Engineers
Chapter 1: C++ BASICS
This class is to introduce you to computing as a tool for solving engineering problems. It is not a computer programming class. It is not a class for computer scientists.
It is a class for engineers to learn the basics of computing and how it can be a useful tool for solving engineering problems. The specific programming tool that we will use is the programming language of C++.

CONCEPTUAL ELEMENTS OF A COMPUTER SYSTEM:

· Input

· Processing

· Storage/Memory
· Output
HARDWARE ELEMENTS OF A COMPUTER SYSTEM:
[image: image1.png]Central Processing Unit
« ALU

Input « Control Unit

« keyboards
« files
* sensors

R Output
Random Access Memory aka... + monitors/screens
« primary storage/memory * printers
« volatile storage/memory « files
« temporary storage/memory & « actuators

* just “memory”

Secondary (Permanent) Storage .;

» hard drive (high speed) econdary Storage g4
« flash drive f j
+cd

+ dvd /4

NOTES:

· RAM stores things that are being processed right now. It is a silicon-wired card inside the computer box containing huge quantities of memory locations. Each location will store 1 byte of information (1 byte = 8 binary digits = 8 bits) and has an address - a unique hexadecimal number.
· CPU is also known as the “brain” of the computer.
· The arithmetic logic unit (ALU), performs arithmetic and logical operations.
· The control unit (CU), extracts instructions from memory and decodes and executes them, calling on the ALU when necessary.

COMPUTER SOFTWARE
Software is the instructions that control the computer.

They are step by step procedures that tell the computer what to do.

There are two kinds:
1. System software
controls the overall operation of the computer, such as start-up procedures.
e.g. DOS, Windows OS, UNIX
2. Application software
these perform particular tasks, such as word processing or spreadsheet tasks.
e.g. MS Word, a web browser, an email program, Excel
These instructions must be written in a language that the computer can understand.
There are 4 levels/categories of Computer Languages:

1st Generation – Machine Language:
A system of instructions and data directly executed by a computer's CPU.

1001100100111

The CPU understands this.

2nd Generation – Assembly Language:

Uses abbreviations (called mnemonics) to representation the numeric machine codes. There is usually a one-to-one correspondence between simple assembly statements and machine language instructions.
Assembly language needs to be translated into machine language by an assembler.

More:

mnemonics - a code, usually from 1 to 5 letters, that represents an opcode, a number

opcode - Operation Code is the portion of a machine language instruction that specifies the operation to be performed.
3rd Generation – Programming Language:

A set of grammatical rules for instructing a computer to perform specific tasks.
Each language has a unique set of keywords (words that it understands) and a special syntax for organizing program instructions.

e.g. BASIC, C, C++, COBOL, FORTRAN, Ada and Pascal.
e.g.
 do {x = x+1; n++; } while n != 0
You will be able to understand this after you finish this class.
A programming language needs to be translated into machine language by a compiler.
4th Generation - Nonprocedural Languages
e.g. SQL.
The further the language is from the machine language, the higher the language is considered.

Hence C++ is a high level computer programming language.

You will be able to write your own applications (application software) using C++!
All programming languages must be able to do the following:

1. sequencing

2. choice/decision-making (branching)
3. repetition (looping)
What is C++?
C is high level (3rd G) programming language. It is easier to understand than assembly language but harder than most high level languages because it actually has facilities that resemble an assembly language. For example it has DMA – Direct Memory Access which makes it like low level assembly languages, i.e. it has the ability to manipulate the computer’s memory. Beware! This is dangerous. It allows you to destroy computer OS and/or destroy crucial information that you don’t want to lose.

C++ is an extension of the programming language C.

C was developed for writing and maintaining UNIX OS and programs running on UNIX.
It became so popular that it was also used for other OS.

C++ is more or less an extension of C.

 C
 overlap

C++

Most C programs are C++. Not visa versa.

Big difference is that C++ has facilities for classes.
Classes are an important feature of OOP - Object Oriented Programming

C++ is OOP; C is not.
Both are standardized by ANSI/ISO

ANSI C defines the standard C library which is used by C++

ANSI C++ defines a standard library of C++ classes

What is OOP?

3 main characteristics:

1. encapsulation
 information hiding/abstraction – you don’t need to know how something works in order to use it. You just need to understand what it does. (Like a car.)
2. inheritance
can reuse code

3. polymorphism
a single name can have multiple meanings depending on the context
Actually, C++ is not considered to be a pure OOP because it tempers its OOP features with concern for efficiency and practicality. But it is close.

Summary: The major characteristics of C++ are:
· powerful abstraction mechanisms/encapsulation (functions, classes, others)
· ability to overload operators and functions (polymorphism)
· namespaces that allow reuse of class names and function names (polymorphism)
· DMA - direct memory access

HOW A C++ PROGRAM GETS EXECUTED
1. First you write the source code in the C++ language and save it:
myProgram.cpp
2. Then it needs to be preprocessed and compiled to become object code:
myProgram.obj
3. Then it is linked with other files and becomes executable code
myProgram.exe

A compiler is a program that transforms your instructions into machine language.

Compiling is process of turning programming language into machine language.

People who design/write compilers are at high end of computer science. (Above programmers.)

Linking is process of adding code/programs to your source code to get executable code.

The linker adds the object code from previously compiled files to the object code produced from your source code to produce exe. code
So you will need to have access to a compiler to write and run the programs for this class:
Your choices are the classroom, the school labs, or you can install one on your computer at home with the disk that comes with the book. They might have slightly different IDEs .

FUNCTIONS IN C++
All procedure-like entities in C++ are called functions.
In other languages you might come across other terminology:

· procedures
· methods
· functions
· subprograms

· subroutines
What is a function?

In general, it is a black box that chews, crunches and munches on your input and then spits out an answer.

Input

BLACK BOX

Output

(processing)
You put in 0-n value(s)

The function returns at most one value
called arguments

and/or performs actions

Note:

· in C++ you can have a function that does not require any arguments
· in C++ you can have a function that does not return anything (called a void function)
· the arguments and the returned value will have a specific data type
The basic syntax is: functionName (argument1, argument2…)

You need to know:

· the name of the function

· the number, order and datatype of each argument

· the meaning and datatype of the value (if any) that the function returns

· what actions (if any) the function performs
You don’t need to understand what happens inside the black box!
What goes on inside the box is called the implementation of the function.
It is the actual code that enables the function to do what it is supposed to do.
The implementation (how something works) is separate from the ability to use it!
This is called information hiding or procedural abstraction or encapsulation.
The description of how to use a function is called the interface.

It explains the required arguments, the data types, the meaning of the value that the function returns.
How/Where are functions used?

A void function is used by just naming the function with the appropriate arguments whenever you want the actions executed that the function will perform.

A valued function is used in any expression where you want to use the value that the function returns.

DATA TYPES (primitive)
Data is stored inside variables. These are classified according to the kind of information that they will hold. Sometimes the information is numeric. Sometimes it is text in nature. Or a date.

The following shows the names of the data types that C++ has to offer along with a few comments explaining the different categories. The details of their size and range can be found in the textbook. Be aware that the size and range of these data types will depend on the type of operating system that you are using.

integer data types
integers are whole numbers, or considered exact values – no decimal

· short int

· int
A literal integer number is by default an int. To force it to be long, just append the letter L to it.

· long int

· there are also unsigned versions of these (only positive values)

decimal or floating-point number data types
decimals are approximate values – they have a decimal point

· float

· double
A literal decimal number is by default a double. To force it to be long, just append the letter L to it. To force it to be a float, just append the letter F to it.

· long double (more significant digits and precision)

character data type
a character is a single character - a letter, digit, symbol on the keyboard, or a non-printable character such a newline. Each character is assigned a unique number. The most common method for encoding characters is ASCII (American Standard Code for Information Interchange). So when a character is stored in memory, it is actually the numeric code that is stored. When the computer is instructed to print the value, it displays the character that corresponds with the numeric code. Some examples of char literals are 'a' '\n' '?' - note the single quotes
· char

Boolean data type
A Boolean value can only be true or false. In C++ sometimes a Boolean value might be interpreted as 1 or 0.
· bool

These are all called primitive data types.
VARIABLES

Declaring Variables
Variables must be declared and given values before they are used.
Declaring a variable allocates memory space!

Syntax:
datatype identifier;

Example:
double velocity;

int day, month, year;

Initialization

One way to give a variable a value is to initialize it. i.e. give it a value immediately when it is declared.
These two syntaxes are the same:

int x = 3;

OR

int x(3);
Alternatively:

int x;

// declaring without initialization

x = 3;

// now x is assigned the value of 3
If you don’t give a variable a value before you use it, there may not be an error.
But you’ll get garbage out.
Esoteric note:

There is a difference between declaring and defining.

A declaration is when name is introduced. A definition is when storage for a named item is allocated.

For case of variables these two things happen at the same time.
COMPUTER STORAGE AND ASCII

Computers can only understand binary code, i.e. 1s and 0s.

Consequently, the memory in a computer can only store 1s and 0s: bits (binary digits)

Each datatype takes a different amount of computer storage.

A byte is a measurement of storage capacity that is equal to 8 bits.

A byte can have 28 = 256 different combinations of 1s and 0s
Each of these combinations can represent 256 different characters.
ASCII (American Standard Code for Information Interchange) is the standard that gives the corresponding characters for each decimal number from 0 – 255.

See ASCII chart in Appendix.
So a byte is approximately equal to 1 character (a letter, a digit, a symbol) of information.

Each byte of memory has a unique address called a memory address.

This address is stored numerically, often in hexadecimal (base 16) format.

So a double data type might take 8 bytes of storage and an int might take 4 bytes.

In conversion from decimal to binary there is round off error because there is no exact equivalent binary number for a decimal number. (There are exact equivalents for integers.)

MORE DATATYPES (non-primitive)
Data types that can hold text strings
· C-string
This is actually a special type of array that always terminates with the null character. (ASCII code is zero) All literals are by default C-strings.

· string
This is actually a class found in the std lib named string.
Programmer-defined data types – classes!
C++ allows programmers to define their own data types. They are called classes. A class has member variables and member functions.

· We might define a class called engine.

· We could give it member variables RPM, torque, compressionRatio, etc.
· We could define a member function called calcPower which will use the member variables to calculate the engine power.

The syntax to declare an object of this class:

engine myLittleRedEngine;
myLittleRedEngine is a declared object of the class engine

This is similar to the declaration of a variable:

double velocity;
velocity is a variable of the type double
So an

“object
of
a
class”

is like a
“variable
of
a
type”.

COMPONENTS OF A C++ PROGRAM

Preprocessor directives
#include "stdafx.h"

#include <iostream>

C++ comes with standard libraries (or “library” files) that have standard things in them that you might want to use. (e.g. functions, classes, etc.)

The Appendix gives a listing of the different functions and which libraries (or “library” files) they are in. These library files are known as header files.

The preprocessor directives tell the preprocessor to include the text of the header file in your code. So here, the text inside the two files iostream and stdafx.h will be inserted in your code. (iostream is in the C++ standard library and includes things that enable console I/O. Since it is in the standard library it has the delimiters < > The other file is not a standard file and so has the delimiters “ ”)

Esoteric note:
Header files only contain the interface of the items inside. The interface describes how the item is used. It doesn’t explain how it is implemented, i.e. it doesn’t include the code that makes it work. The implementation of the items in the header file is found in another file that will be added by the linker.

Using directives

using namespace std;

Libraries place the definitions of any named item in a namespace. A namespace is simply a name given to a collection of function or class names and their definitions. So one name can be defined in two different namespaces and it will mean different things. A program can use one of these namespaces in one place of the program and the other namespace in another part of the program.

This particular using directive tells the program that the names used in the program are defined in the std namespace. All std libraries place their definitions in the std namespace.
The return statement

return 0;

Every command/statement has an exit status. i.e. it puts a value in the exit status variable.
So if the statement return 0; gets executed, the value 0 is put into the exit status variable.
So main returns the integer 0 as the function’s value if things went OK.
If the program ended unexpectedly, the exit status variable will have some other value.
Comments
// this is good for one line of comment – the compiler will ignore the rest of the line
/*…this enables

 several lines of comment ……

*/

Every programmer needs to judge their use of comments. They need enough to clarify a program, but too many is confusing and cumbersome!

The main function
int main()
{
;

; //this is function body
 OR
;

return 0;

}

int main() {

;

;

;

return 0;

}

Every OS (and program) in the universe has a main function. As soon as it runs, it looks for main. The function main then gets executed and when main is finished, control goes back to the OS. (Or if it started from a program it goes back to the program.)

A C++ program is really a function definition for a function called main. When you run a program, the run-time system automatically invokes the function called main. When the function is invoked the statements inside the braces {} (called the body of the function) are executed.

So here we are just defining the function called main. It returns an integer. It takes no arguments.
Sometimes main might be a void function, but this is not common or recommended.
ORGANIZATION, STYLE AND FORMATTING
Organization of a C++ Program
· declarations should always go first
All items used in a program need to be declarated so they can be named and memory allocated.
· variables
· functions
· classes, etc.
· input (read)

· processing (assignment statements, branching, etc.)
· output (write)
· return statement
Programming Style – make your code readable!

· vertical alignment – separate blocks of code with a single line spacing

· horizontal alignment – same indentation for logically connected code
· use comments!

· use self-documenting code, i.e. descriptive identifiers

Identifiers are the names for a variable, function, class or object.

· It must start with an underscore or letter. (But leave the underscore for system variables.)

· It can then have an unlimited (no longer limited to 31) combo of letters, digits or underscores.
(But leave double underscore for system variables.)

· It is case sensitive.

· It can’t be a keyword.
Keywords or reserved words are predefined and cannot be reused.
Examples of some keywords: and, not, class, int, double, true, false
There are other predefined identifiers that are defined in standard libraries required by the C++ Standard. They can be reused. e.g. cin and cout. But don’t.

Literals
A literal is a specific value. For a numeric datatype examples of a literal would be 3.1416. A literal date might be 01/09/2009.

Constants
A constant is a name (identifier) for a specific value. The value does not change as a variable can.

To declare a constant use the same syntax as for a variable but with the const modifier:

const int MyLUCKYNUMBER = 13

Conventions for naming variables and constants
· Identifiers for constants should use all caps.
· Identifiers for variables should start with lowercase and then use mixed case rather than underscores, e.g. taxRate, maxVelocity not tax_rate, max_vel.

· All identifiers should be descriptive!

Formatting the output
You might get several types of formats for floating point numbers depending on the defaults of your system.

Scientific notation will look like this: 3.67e17 or 3.67E-17 note: the exponent cannot be a decimal
For now to get floating point numbers to come out in a format with 2 digits to the right of the decimal point use this magic formula:
cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2); // you can use any nonnegative integer or variable of type int here.

OPERATORS

Think of operatores just like functions, but with different syntax.
Assignment Statement/Assignment Operator =
Syntax:
Variable = Expression;
When this statement is executed it will first evaluate the expression on the right hand side. Then it will put that value into the memory location of variable on the left hand side.

Examples:

x = 2 + 3;

vel = initVel + acc * t;

Notes:

· The = is not an equal sign! It is an assignment operator!

· The thing on the left must be a variable

· The thing on the right must be an expression that evaluates to a value that is the same datatype as the variable on the left.

· 2 + 3 = x; This will cause the compiler to give error message.
An expression is anything that evaluates to a value. It can be a combination of variables, operators, constants, arithmetic expressions with mathematical operators, expressions with function invocations.

Assignment Compatibility / Automatic Type Conversion
In general you can’t place the value of one type into another.

However sometimes you can because of automatic type conversion.
Different compilers will do it differently.

Some general rules about this:

· ints will be automatically type cast into doubles
So you can do this: double d = 5;

//the value 5.0 will be put into the variable d

· some compilers will let you place a double value into an int variable
So if you do this: int x = 2.99;
Most compilers will put the value 2 into the variable x.
(Note that the value is truncated, not rounded.)
Other compilers will issue an error, some will issue a warning, and others will do what they want and not tell you what they are doing.

· bools can be assigned to values of int
true = any integer other than 0 and false = 0
and vise versa

· ints can be stored as char and vise versa
e.g. The int 65 can be stored as the char 'Z' and the char 'Z' can be stored as the int 65.
chars consume less memory
Don’t do this. But it works because of ASCII.
Type Casting

When you need to change the value of a variable from one type to another:

int to double: stPerChair = static_cast<double>(classEnrollment)/noChairs;

double to int: dollarsPerMonth = static_cast<int>(yearlySalary) / 12;
Note:
These do not change the types or values of the variables.

They just convert it for the one statement being executed.
There are 4 kinds of type casting. We only use this one, but for completeness here are all of them:

· static_cast<double>(3)

· const_cast<double>(3)

· dynamic_cast<double>(3)

· reinterpret_cast<double>(3)

Binary operators:

· + addition

· - subtraction

· * multiplication

· / division (careful – this can be integer division or floating point division; they are different!)

· % modulus (mod) operator – gives remainder

· = assignment operator

Note: when using / and % with ints, the ints must be non-negative.

Unary operators

· +

· -

Precedence Rules
Precedence of operators is set – see Appendix.

In general unary operators and the assignment operator evaluate from right to left.
Other operators with same precedence evaluate left to right.

Interesting
An assignment statement can also be an expression.

This will compile:
n = m = 2;

//By precedence rules this is n = (m = 2)

What does it mean?

The subexpression (m=2) both changes the value of the variable m to 2 and returns the value 2.

So after this statement is executed, n is given the value 2.

The increment operator ++
int count = 1

count ++;
//This is the same as count = count + 1;

So now the value of count is 2.

++ is called the increment operator – it can only be used on single variables

Prefix or Postfix position
The expression count++ returns a value of count and also changes the value of count.

When the ++ is in the postfix position and is used in an expression, it first returns the value and then increments it.

int count = 1;

x = (count++ * 2);

What is the value of x? (answer: x now has the value of 2)

What is the value of count? (answer: count now has the value of 2)

If the ++ is in the prefix position and is used in an expression, it first increments the value and then returns it.

int count = 1;

x = (++count * 2);

What is the value of x? (answer: x now has the value of 4)

What is the value of count? (answer: count now has the value of 2)

Be careful about the order of evaluating expressions. You can’t be sure what compiler will do:

((n+2) * (++n)) + 5 is unpredictable. It will depend on what gets evaluated first, (n+2) or (++n). You just don’t know.

The decrement operator – –
acts the same as ++ except subtracts 1 from the variable
Other operators:
+=
x += y means x = x + y

–+
x -= y means x = x – y

*=
x *= y means x = x * y

/+
x /= y means x = x / y
%=
x %= y means x = x % y

INPUT/OUTPUT WITH cin AND cout
cout is an object that enables the programmer to display output on the monitor.
cin is an object that enables the programmer to input data from the keyboard. (It allows the user to supply a value for a variable.)
Both cout and cin are objects found in the header file <isostream>.
cout is an object of the class ostream and cin is an object of the class istream.

>> and << are operators used with cout and cin that are also found in the header file <isostream>.
So you will need to put #include <iostream> at the top of your program to use these things.
How cout works
cout << "\n\tsalary = " << salary << (2+3) << (velocity *2) << endl ;
<< is the insertion operator. It will insert (display) whatever follows it to the monitor. The way it will be displayed depends on what it is.

· If it is a string, then each character in the string will be displayed on the screen (with out the quote marks).
For example "\n\tsalary = " is a string. Each character will be placed on the screen. (See escape sequences below to understand how “\n” and “\t” are interpreted.
· If it is a variable, like salary, its value will be placed on the screen.
· If it is an expression then it will first be evaluated. Then its value will be displayed on the monitor.
For example (2+3) will display as 5.

· If it is a manipulator then it will have formatting instructions for the display.
For example endl is a manipulator that tells the curser to advance by one line.
Escape sequences

The backslash\ tells the compiler that the sequence following the \ does not have the usual meaning. Such a sequence is called an escape sequence.
Some of the escape sequences:
\n
//newline character – instructs the compute to start a new line (See ASCII chart)

//note: endl means the same thing
\t
//tab character – skips a fixed number of spaces
\f
//form feed – skips a page when sent to a printer

\''
// this means that you really want a '' in the string, it doesn’t end the string

\\
// this means that you really want a backslash, not an escape sequence

\z
// this is not a defined escape sequence. Different compilers will behave differently.
It is a good idea to output a newline at the end of every program. It avoids problems.

cerr

There is another object of the class ostream called cerr found in the header file <isostream>.

It is like cout but is used for error messages. In some OS cerr and cout can be redirected to different files. That is really the only difference. We won’t use it.
How cin works

cin >> x ;

>> is the extraction operator. It extracts a value from the input buffer and puts that value it into the variable on the right side of it. So the thing that follows the extraction operator must be a variable.
More detail:
· When the computer comes to a cin statement, it goes to the input buffer to find a value.

· If there is nothing in the input buffer the computer will just wait until there is.

· The user types characters at the keyboard and then presses the Enter Key. The action of pressing the Enter Key causes whatever was typed to go into the input buffer. (The enter key is actually the newline character, '\n'.)

· The compiler will read all the characters in the input buffer up until the first white space (spaces, tabs or newlines). The exception is if the variable is of data type char, in which case it will just read one non-white space character.
· It then converts those characters into a value of whatever type the variable is on the right side of >>.

· The computer then puts that value into the variable.

Example:

cin >> x >> y;

If you enter 1 2 and then the enter key, then x will be assigned the value of 1 and y will be assigned the value of 2.

If you enter 12 (no spaces in between) and then the enter key, then x will be assigned the value of 12 and y will still be waiting for a value.

Note:

The idea of objects and classes will be covered more later. Now it is hard and abstract. So don’t worry too much right now. We’ll understand it more later.
Other languages have easier I/O but this gives programmer more control.
ERRORS IN A PROGRAM
In any program there may be errors.
The 3 different types of errors:

1. compilation/syntax errors
Your program won’t compile because you wrote something illegal.

2. logic errors
Your program will run but it doesn’t give you what you want.

3. runtime errors
Your program will compile but then when it is run it will abort because something is wrong. (like division by zero)

C++ source code

(myProgram.cpp)

You can use a text editor such as Notepad to create this;�usually you give it an extension of .cpp

C++ Preprocessor

Gets rid of comments and includes the header files from the #include directives.

(The header files are just the prototypes; not the implementations.)

Preprocessed C++ source code

Contains include files. This is a temporary file.

Linker

Adds the library of precompiled functions �that are needed for the implementation of the prototypes in the header files.

Object code

(myProgram.obj)

C++ compiler

Changes the high level programming language into low level machine language.

Executable code

(myProgram.exe)

Library code

Start-up code

Page 8 of 16

