ENGN C++ Crib Sheet Chapter 1
	An identifier is a name for a variable, a function, a class or anything that is named.
Rules for identifier names
· Must start with alpha character or underscore _ (reserve _ for system identifiers.)
· Rest can be alpha character, digit (0-9) or underscore_
· No length limit. (Some compilers limit to 31 characters.)
· They are case sensitive e.g. A is different than a
All variables must be declared to be of a data type. We will use these.

data type
keyword

Literals (Constants)
integer
int

1234
decimal
double

3.1416 or -6.02e23
character
char

'H' or 'h'
Boolean

bool
true or false / 1 or 2
text
string

"\nWendy"
Examples of syntax for declaration and initialization of variables:

int firstNumber = 45;

int sum (0); // this is same as int sum = 0;

double rectangleArea = 67.9;

bool overloadFlag = true;

char firstInitial = 'J' ;
	Basic Main Program Template

#include "stdafx.h" //only need this if you use textbook’s compiler
#include <iostream>

using namespace std;

int main()

{
 declarations;

 input statements;
 processing statements

 output statements;
 return 0;

}

Comments are used to clarify your source code for yourself and others.

Use when necessary but sparingly.

To tell the compiler to ignore these comments use:

// tells compiler to ignore the rest of the line
/* tells compiler to ignore all

 the lines between these delimiters */

	How cin works

cin >> x ;

>> is the extraction operator. It extracts a value from the input buffer and puts that value it into the variable on the right side of it. So the thing that follows the extraction operator must be a variable.

More detail:

· When the computer comes to a cin statement, it goes to the input buffer to find a value.

· If there is nothing in the input buffer the computer will just wait until there is.

· The user types characters at the keyboard and then presses the Enter Key. The action of pressing the Enter Key causes whatever was typed to go into the input buffer. (Note: The enter key is actually the newline character, '\n'.)

· The compiler will read all the characters in the input buffer up until the first white space (spaces, tabs or newlines). The exception is if the variable is of data type char, in which case it will just read one non-white space character.

· It then converts those characters into a value of whatever type the variable is on the right side of >>.
· The computer then puts that value into the variable.

	Constant Modifier

You can declare a variable to be a constant with the modifier called const:

 const double PI = 3.141592654 ;
 const double TAX_RATE
Style: USE ALL CAPS with underscores if necessary
Once set, it is not really a variable anymore, so you can't put it on left side of =
Sometimes you need a variable to be of a different type for one calculation.
You can use type casting:
int to double: stPerChair = static_cast<double>(classEnrollment)/noChairs;

double to int: dollarsPerMonth = static_cast<int>(yearlySalary) / 12;

	Increment Operator ++: Increments the variable by adding 1 to it.
 count++; means same as count = count + 1; // Use only on a single variable.

Decrement Operator --: Decrements the variable by subtracting 1 from it.
 count--; means same as count = count - 1; // Use only on a single variable.
Compound Operators:

variable op = expression same as variable = variable op expression

 x + = 2;
 same as x = x + 2

 x - = 4;
 same as x = x - 4;

 x * = 6;
 same as x = x * 6;

 x / = 8;
 same as x = x / 8;

 x % = 3;
 same as x = x % 3;

	Arithmetic Operators

+
add two constants, variables or expressions

–
subtract " " " "

*
multiply " " " "

/ divide " " " "

%
mod

Beware: / can mean one of two things:

1. Integer Division
13/2 = 6 truncates, does not round the number
2. Decimal Division
13./2. = 6.5

modulus operator %: It returns the remainder of an integer division. e.g. 17 % 3 = 2

Exponential operator

There is no exponent operator:
Use the pow function found in #include<cmath> e.g. pow(10,2) = 102
Assignment Operator

single variable on left side = expression on right side

The variable is given the value of the expression.

e.g. areaOfCircle = pi*radius*radius;

 y = a*pow(x,3) + b*pow(x,2) + c*x + d;
	Formatting Decimal Numbers
Use this “Magic Formula”:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);

cout.precision(2);

Alternate Syntax:
cout.setf(ios::fixed | ios::showpoint);

cout.precision(2);

