ENGN 38

Introduction to Computing for Engineers

Chapter 2: Flow of Control

Computer Science Theorem
Any (computing) problem can be solved using:
1. sequence
This is the default mode of the C++ compiler.
It just exectutes commands one line at a time, in sequence.

2. decision/choice (branching)
C++ has 2 ways to do this:

i. if – 3 versions:

I. single selection structure

II. double selection structure

III. multiple selection structure

ii. switch – multi-way branching

3. repetition (looping)
The set of repeated steps is called the loop body.
Each repetition is called an iteration.

There are two types of loops:

· counting loops
The iterations are done a specified number of times.

· conditional flag loops
The iterations are done until a specific condition is met (a flag is true or false).

C++ has 3 ways to do this:

i. while loops

ii. do-while loops

iii. for loops

Boolean expressions
Most of these branching and looping mechanisms need a Boolean expression.

A Boolean expression is just any expression that evaluates to a Boolean value, i.e. either true or false.
true and false are predefined constants of type bool
Boolean values can be automatically converted to an int type (and vise versa).
· When needed true is automatically type cast to the value of 1.

· When needed false is automatically type cast to the value of 0.
· When needed any integer other than 0 is automatically type cast to the value of true.

· When needed the integer 0 is automatically type cast to the value of false.

A Boolean expression can have comparison (relational) operators and logical operators
Comparison operators (all binary):

· ==

· !=
· <=
· >=
· <
· >

Note: be careful – don’t confuse the relational operator == with the assignment operator =

Logical operators (all binary except ! is unary):

· ||

· &&

· !

Note: it is best to avoid using !
Truth tables give the results of logical operators for all possible values of the operands.
	&&
	1
	0

	1
	1
	0

	0
	0
	0

	
||
	1
	0

	1
	1
	1

	0
	1
	0

	
!
	1
	0

	
	0
	1

A simple Boolean expression uses only one comparison operator:

x == 3

A compound Boolean expression uses logical operators too:

(x==3) || (y < 4)

(x==3) && (y < 4)

Precedence Rules
See appendix but in general:
· ! is evaluated before the comparison operators which are evaluated before && or ||
· unary operators and the assignment operator are evaluated right to left

· other binary operators are evaluated left to right

Short circuit evaluation
is a short cut method that C++ uses. (Other languages don’t)

· If the first operand of && is false the second isn’t evaluated.
· If the first operand of || is true the second isn’t evaluated.

Why not? Because it is unnecessary!
Why do we care? Because it can avoid a run-time error:

e.g. if ((kids != 0) && ((pieces/kids) >= 1))

cout << “Each kid can have ” << pieces/kids << “ pieces of candy!”;

If kids == 0 and there were no short circuit evaluation, this code would produce a run time error since pieces/kids would be dividing by zero.

Some exercises

1. You want to see if you are over the time limit of 90.
If you are over the time limit you want answer to be true.

If you are not over the time limit, you want answer to be false.

What will the value of overLimit be after this code is executed?
bool overLimit;

int time = 10;
const limit = 90;
overLimit = !time > limit;

Answer: overLimit will be false!
To see why take it step by step.
· time evaluates to 10
· ! implies that time is a Boolean value. It is not. So it gets automatically type cast as a bool. So 10 is typecast to true. !10 is false. So !time evaluates to false.
· limit evaluates to 90

· Now the comparison expression, !time > limit, is evaluated.
!time is false and limit is 90. So a bool is being compared to an integer. So the bool is typecast to an int. In this case false becomes 0. Is 0 > 90? No. So the expression is false.
· So overLimit is assigned to the value of false.

You wanted: !(time > limit)

Or better yet: (time <= limit)

2. What will happen after this code is executed?

if (x = 12)

 cout << “Hi”;

else

 cout << “Good-bye”;

Answer: The monitor will always show “Hi” no matter the value for x.

Why?

· = is not the same as ==
· So (x = 12) is an assignment statement, not a boolean comparison.
· All statements return values. Assignment statements return the value assigned.
· So this statement will return the value of 12.
· 12 will be typecast to true.
3. What value will answer have after this code is executed?

bool answer;

int y ;

cout << "\nWhat is y? ";

cin >> y;

answer = 2 < y < 3;
Answer: answer will always evaluate to true!
Why?

· comparison operators are evaluated left to right

· Whatever y is the expression 2< y will be evaluated and either be true or false

· This will be typecast to 1 or 0

· Both 1 and 0 are less than 3
· 0 < 3 and 1 < 3 are both true
· answer will be assigned the value of true
if statements
Syntax:

Flow Chart:

if (Boolean_expression)

true_statement(s);

Bool_exp T true_statement(s)
else

false_statement(s);

 F
else can be omitted if you don’t want any false path.

 false_statement(s)
If there are multiple statements
you need {} to designate a block of code.

Nested statements: Indent each level or sublevel of statements.

if (Boolean_expression)

{ true_statements;

T

}

else

if (Boolean_expression)

F

{ true_statements;

T

}

else

if (Boolean_expression)

F

{ true_statements;

T

}

else

if (Boolean_expression)

F

{ true_statements;

T

}

else

F

{ false_statements;

}

Multiway if-else is really just nested if-elses but indented differently:
if (Boolean_expression)

{ true_statements;

}

else if (Boolean_expression)

{ true_statements;

}

else if (Boolean_expression)

{ true_statements;

}

else if (Boolean_expression)

{ true_statements;

}

else
{ false_statements;

}

switch statement
Implements multi-way branches

Syntax:
switch (controlling_expression)
// The controlling_expression must return one of these:
{ case constant_1:

//
bool, int, char, enum constant

statements;

break;

 case constant_2:

// The constants must be unique.

statements;

break;

 case constant_3:

statements;

break;

 default:

statements;

}

The first case that has a match of the controlling_expression with the constant has its statements executed.

Switch ends when break is encountered or end of switch.

The break statements are optional.

 - if they are not there the case continues until it encounters a break or the end of the switch statement

e.g. this is OK:

case ‘A’:

case ‘a’:

Since there is no break statement, then the next case is executed.

enumeration types

a type whose values are defined by a list of constants of type int. (But don’t use for arithmetic.)
e.g.
enum monthLength {Jan = 31, Feb = 28, etc.};
enum direction {N = 0, S = 1, E = 2, W = 3};

enum direction {N, S, E, W};
// this is same as previous statement because the first value by default is 0 and the next is the previous + 1.
So enum direction {N = 1, S, E = 6, W};
would give N = 1, S = 2, E = 6, W = 7

while loops

Syntax:
while (Boolean_expression)
// Make sure that there is no semicolon after boolean expression

{statements;

}

next statement;

If (Boolean_expression) is true then the loop body is executed.

When you reach the end of the loop body the (Boolean_expression) is evaluated again, i.e. the condition is checked again!

If (Boolean_expression) is false then the next statement is executed.

Flow Chart:

 bool_exp

loop body

 T

 F
Beware of inactive loops

while (false)

{statements;

}

next statement;

Beware of infinite loops

int x = 3;

while (x > 0);

{statements that only make x > 0;

}

next statement;

^C will abort on most systems

What happens with this code?
while (Boolean_expression);

// Note there is a semicolon at the end here

{statements;

}

next statement;

do-while loops

Syntax:

do

 { something;

// this is the loop body
 } while (Boolean_expression);

// note that there is a ; here at the end
Flow Chart:

 T

 F
Main difference between do-while and while is that the do-while will execute the loop body at least once.
comma operator

Evaluates a list of expressions and returns the value of the last one.

e.g. result = (first = 2 , second = first +1)
The first assignment statement in the () assigns a value of 2 to first and also returns the value 2.

The Second assignment statement in the () assigns a value of 3 to second and also returns the value 3.

The comma operator returns the value of the last expression, so it returns 3.

result is assigned the value of 3.

You can have more than one operand but be careful, you need ()s because the order of evaluation is unpredictable.

conditional operator (aka Ternary operator or arithmetic if)

 x = (Boolean_expression) ? expression_1 : expression_2;

The condition expression is the expression to the left of the assignment operator.

The conditional operator is the ? and the :

If the (Boolean_expression) is true then expression_1 is returned, otherwise expression_2 is returned.

for loops

Perfect for arrays.

Syntax:
for (initializing_action; Boolean_expression; update action)
 // note that you do not put a ; here
{ loop body

}

This is equivalent to the following syntax:

initializing action

while (Boolean_expression)

{loop body;
 update action;

}

Flow Chart:

 initializing_action

 true

 Boolean

 loop body

update_action

 false
Statements that take you places
A break; statement ends a loop and the program goes on to the next statement after the loop.
A continue; statement ends the current iteration of a loop and the program goes on to the next iteration. (Avoid this.)

A return; statement ends the function and the program goes to the place that called the function. (If the function is main() then the program returns control to the operating system and the program ends.

An exit; statement returns control directly to the OS.

Page 9 of 9

