ENGN 38

Introduction to Computing for Engineers

Chapter 12: File Streams & File Stream Objects
Vocabulary Preview
(permutations and combinations of just six words)

1. input

2. output

3. console

4. file

5. object

6. (data) stream
·
input stream
· output stream
· input console stream
· output console stream
· input file stream
· output file stream
· stream object
· input stream object
· output stream object
·
input console stream object
· output console stream object
· input file stream object
· output file stream object

What is a (data) stream?

A stream is a continuous flow of data (usually character).

If the flow of data is going into your program, it is an input stream.
· An example of an input stream is the data in the input buffer
(which gets data from the keyboard.)
· Another example of an input stream is the data in a text file (which is saved on your computer.)
If the flow of data is going out of your program is an output stream.
· An example of an output stream is the data placed on the monitor.
· Another example of an output stream is the data placed in a text file.
How does the data stream get connected to your program?

Answer: By a stream object.
An input stream object connects your program to an input stream.

Some examples:

· input console stream object
this connects your program to the data in the input buffer
cin is an input console stream object!

· input file stream objects
this connects your program to the data in a file

An output stream object connects your program to an output stream.

Some examples:

· output console stream object
this connects your program to the data placed on the monitor
cout is an output console stream object!
· output file stream objects
this connects your program to the data placed in a file
A few notes about classes and objects that will help put this in context…
In other words: What is an object ?
· A class is a user defined data type.
(int, double and char are called primitive data types or just called “primitives”)
A class has member variables and member functions.

· An object is a variable whose datatype is a class.
So an object of a class is like a variable of a type.
 e.g. myAge might be a variable of type int
 myLittleCar might be an object of a class named automobile

· Objects, just like variables, must be declared before you can use them.
Objects are declared to be of a particular class, just like variables are declared to be of a particular type.
 e.g.
int myAge;

automobile myLittleCar;

· To invoke a member function of a class, you must use a calling object,
i.e. a declared object of the class.

 e.g. Let’s say that automobile is a class that has a member function called calcPower which takes two arguments.
You can use the object myLittleCar to invoke the member function calcPower.
You need the member function access operator (or dot operator):

myLittleCar.calcPower(speed, torque)
Console Stream Objects
cin is an input console stream object
· It is connected to the keyboard.
· It is an object of a class called iostream.
· It has already been declared for you.
cout is an output console stream object
· It is connected to the screen.
· It is also an object of a class called iostream.

· It has already been declared for you.

Make sure to include this code:

#include <iostream>

using namespace std;
File Stream Objects
The objects cin and cout connect our program to the consoles in order to get input and place output. We need objects that will connect our programs to files so that we can get input from and place output to a file.
We need file stream objects!
An input file stream object is an object of a class called ifstream.
It can connect our program to an input file.
We will need to declare it. (Unlike cin)

An output file stream object is an object of a class called ofstream.
It can connect our program to an output file.
 We will need to declare it. (Unlike cout)

The classes ifstream and ofstream are already defined and available if you make sure to include this code:

#include <fstream>

using namespace std;
Summary

	object
	object name
	class
	file in which the class is defined

	input console stream object
	cin
(already declared)
	iostream
	 <iostream>

	output console stream object
	cout
(already declared)
	iostream
	 <iostream>

	input file stream object
	you name it when you declare it
	ifstream
	 <fstream>

	output file stream object
	you name it when you declare it
	ofstream
	 <fstream>

Note:

You should know the definition of each word in the first column here.

Also the meaning of the whole phrase.

Advantages of using files for input and output
(instead of the keyboard and monitor)

· Keyboard and screen are volatile and temporary. Files are permanent.

· Inputs can be saved in a file and used for multiple runs without re-entering.

· Outputs can be saved in a file for each run of the program.

· Files can be modified and created with editors.

· Files are convenient for large quantities of data.
Some File Facts
· Files are linear strings of ACSII characters with an eof marker at the end.

· There is also a file marker (that marks the character that you are reading.
(It is a place keeper just like the cursor on the screen.)
After a character is read the marker advances sequentially.

· To put the file marker back at beginning of file you must close and then open the file.

· Make sure that \n is at the end of a file or the last data may not be read.
Some File Terminology

file (sometimes called a table)

field (sometimes called a column)

record (sometimes called a row)

This is 1 file with 5 fields and 3 records:
	Name
	T#1
	T#2
	T#3
	T#4

	Jake
	90
	98
	99
	87

	Sue
	56
	96
	32
	55

	Marvin
	89
	75
	15
	65

Declaring and using input file streams

· First you must declare an input file stream object.
Since it is of class ifstream the declaration looks like this:

ifstream fin;

· Second you must connect this object to a file.
Do this by using a member function of the class ifstream called open.
The member function open takes one argument and it must be a string (actually a C-string):

fin.open(“someFileOnMyComputer.txt”);

You can think of fin as the internal file name and someFileOnMyComputer.txt as the external file name. Some systems require that you specify the path. If you put the file in the same folder as your .cpp file, you should be OK.

Note: You can do these two steps in one:

ifstream fin(“someFileOnMyComputer.txt”);

· Immediately you should test to see if the function open was successful in connecting the object to a file. (It might fail if the file does not exist or you do not have the correct permissions.) Do this test by using the member function fail which takes no arguments:

if (fin.fail())

{ cout << “\nInput file failed to open.”

 << “\nExiting program.\n”;

 exit(1);

}

Note: The function exit is defined in the file cstdlib. Hence you must use the include directive:

#include <cstdlib>
This function exits the block it is in and returns control of the computer back to the OS.

· Now you can use the object fin just like the object cin.

cout << “Give me two numbers”;

fin >> oneNumber >> anotherNumber;

The variables oneNumber and anotherNumber will get their values from the file connected to fin. (Not the input buffer as with cin!)

· Lastly, when you are finished you should close the input file stream or you’ll have problems:

fin.close();
Declaring and using output file streams
· First you must declare an output file stream object.
Since it is of class ofstream the declation looks like this:

ofstream fout;

· Second you must connect this object to a file.
Do this by using a member function of the class ofstream called open.
The member function open takes one argument and it must be a string (actually a C-string):

fout.open(“myOutputFileName.txt”);

You can think of fout as the internal file name and myOutputFileName.txt as the external file name. The member funcion open which is a member function of the class ofstream works a bit differently than the member function open that is part of the ifstream class. The function open in the class ofstream either creates a new file with this name, or, if one already exists with this name, it is opened with nothing in it! (In other words, if there was something in that file, it is now gone!)

If you don’t want that, but would rather append to an existing file then you must provide a second argument to the member function open:

fout.open(“myOutputFileName.txt”, ios::app);

Things you don’t have to know:

ios is a class defined in the file <iostream>

app is a predefined constant in this class

:: is the scope resolution operator

Note: You can do these two steps in one:

ofstream fout(“myOutputFileName.txt”, ios::app);

· Immediately you should test to see if the function open was successful in connecting the object to a file. Do this test by using the member function fail which takes no arguments:

if (fout.fail())

{ cout << “\nOutput file failed to open.”

 << “\nExiting program.\n”;

 exit(1);

}

Note: The function exit is defined in the file cstdlib. Hence you must use the include directive:

#include <cstdlib>
This function exits the block it is in and returns control of the computer back to the OS.

· Now you can use the object fout just like the object cout.

fout
<< “Your two numbers are: “

<< oneNumber << anotherNumber;

4. Lastly, when you are finished you should close the output file stream, or you’ll have problems:

fout.close();
IMPORTANT
If the class ifstream or ofstream is used as the type for a function parameter,
then the parameter must be CBR!
Checking for the end of a file

1. first number method – the first number read tells you how much data follows.
This is good for counter controlled loops.

2. trailer method – there is a bad data put at the end.
You can test for it to see when you reach the end.

3. eof method – uses the eof file marker at the end of every file.
Every input file stream has a member function called eof that can be used to test or reaching the end of the input file.
fin.eof() returns true if you have read past the end of the input file.

e.g. This will output all the values in a file until the end is reached.
double someVariable;

fin >> someVariable;

// called prime read

while (! fin.eof())

{

 cout << someVariable << endl;

 fin >> someVariable;

}

Note that the order is important. If you do this what will happen?
fin >> someVariable;

while (! fin.eof())

{

 fin >> someVariable;
 cout << someVariable << endl;

}
Answer: someVariable will eventually be the eof marker and if you try to print this to the screen you’ll either get an error or garbage.

If you want to avoid the prime read consider this:
Operators are functions calls. The call returns a value! Usually we ignore the return value but sometimes it is useful. For example the extraction operator returns a Boolean value. So this statement

fin >> someVariable;
will return true if the read is successful, false if not.
So you can do this:
double someVariable;
while (fin >> someVariable;)
{

 cout << someVariable << endl;

}
File names as inputs
open is a member function of ifstream that takes one argument whose datatype is a C-string.

In the above code this argument is supplied as a text literal.

Instead you can declare a C-string variable and ask the user to supply its value:

char filename[16];

ifstream fin;

cout << “Enter file name (max 15 characters) \n”;

cin >> filename;

fin.open(filename);

Note:
The member function open needs an argument that is a C-string.

It cannot be the other type of text datatype called string.
So if you declare filename as a string variable, you must use the member function of string that converts the calling object to a C-string.:

fin.open(filename.c_str());
Formatting the output with member functions of iostream and fstream

· flush()
It takes no arguments. It flushes the output stream buffer.
· precision() or precision(2)
This function is overloaded.
When it takes no arguments then the value returned is the current precision setting.
When it takes one int argument then any number with a decimal point that is output to that stream will be written with a total of 2 sig figs or with 2 digits after the decimal point.
· setf(ios::fixed)
It takes one argument of the class ios which is in the standard namespace. These arguments are predefined constants in this class and are called flags. The flags determine certain behaviors of the output stream.
· ios::fixed causes the stream to output floating-point numbers in fixed-point notation.
· ios::showpoint causes the stream to output decimal points in floating-point numbers.
· ios::scientific
· ios::showpos
· ios::right
· ios::left
· ios::dec
· ios::oct
· ios::hex
· ios::uppercase

· ios::showbase

· unsetf(ios::fixed)
Like setf but this function unsets the flag.

· width(5)
It takes one int argument. The next output (and only the next output) will have a field with of the specified argument. If the output requires more space than allocated, as much additional space as needed will be given.

· flags()
flags(flagSettings)
flags(0, iso::floatfield)

This is an overloaded function.
When it takes no arguments it returns a value of type long that codes all the flag settings.
You can use this long value as an argument to the function flags and the settings will be restored.
 e.g. int precSetting = fout.precision();
 long flagSettings = fout.flags();
 do whatever, change settings;
 fout.precision(precSetting);
 fout.flags(flagSettings);
When the arguments of flags is (0, iso::floatfield) the setting are restored to the default setf settings. (not necessarily the settings you want.)

· fill('? ')
It takes one char argument. It specifies the fill character when the output field is larger than the value output. (Default is a blank.)

Examples
fout.flush();

fout.setf(ios::fixed);

fout.unsetf(ios::fixed);

fout.setf(ios::showpoint);

fout.setf(ios::fixed | ios::showpoint);

fout.precision();

fout.precision(2);

fout.width(5);

fout.flags();

fout.flags(flagSettings);

fout.flags(0, iso::floatfield);
fout.fill('?');
Saving Flag Settings

To avoid side effects of a function you might want to save your flag settings before calling the function and the use them to restore the original setting after the function call.

Manipulators

A manipulator is a function that is called in a nontraditional way.

They are placed after the insertion operator <<
Examples:

· endl – advances the cursor or the file marker by one line
· setw – acts like member function width, it applies only to the next item output.

· setprecision – acts like member function precision

· setiosflags – acts like member function flags

· resetiosflags – acts like the member function unsetf

You’ll need this code at the top:

#include <iomanip>

using namespace std;

Input Stream Member Functions
· close() – closes input stream

· clear() – puts cursor back at the beginning of the file

· open(''someC_string'') – opens the specified file

MISC
· continue;

// simply goes to next statement

· break;

// leaves the loop and goes to the next statement

· return;

// leaves the function and returns to the calling function (usually main)

· exit(1);

// leaves the program and returns int to the OS
Page 8 of 10

