ENGN 38

Introduction to Computing for Engineers

Chapter 5: Arrays
Array Basics
An array is a collection of data, all of which are of the same type.
Arrays are good for processing large collections of data.

e.g. A set of grades or golf scores. Or data from scientific experiments.
Syntax to declare an array:

datatype arrayName[SIZE];

// SIZE is the declared size of the array.

// It must be a number or a constant, not a variable.
For example:

int testScores[27];

// int is the base type of the array.
An array can be viewed as a list of variables with a uniform naming mechanism.

The above declaration is just like declaring 27 different variables whose names are:
testScores [0]
testScores [1]
testScores [2]
….
testScores [26]
These are just like any other variable of type int.
The integer in the [] is called the index or the subscript. They always start with 0 in C++.

The variables themselves are called indexed variables, subscripted variables or elements of the array.

A subscripted variable can have an expression inside the brackets [], including a variable.

It must evaluate to an integer, preferably, an integer that is in the range of the array.

BEWARE! The compiler will allow you to use an out of range or illegal index.
A common way to step through an array:
for (i = 0; i < SIZE, i++)

{ cout<<“element ”<< i << “is ”<< testScores [i] << endl; // do something to the ith element;

}

// (in this case just print it out)
Initializing Arrays
int children[3] = {2, 12, 1};
This is the same as assigning the value 2 to children[0], 12 to children[1] , etc.

In this case you can omit the 3.

If you don’t give enough values in the {}, the first elements will be initialized and the rest will be 0 of the array base type.

If there is no initialization, the elements just have garbage values.

Arrays in Memory
A computer’s memory consists of a list of numbered locations called bytes.

(1 byte = 8 bits = ~1 character)
The (hexadecimal) number is known as its address.

A simple variable is implemented as a portion of memory consisting of the number of consecutive bytes needed to store a variable of that type.
A simple variable in memory is described by two pieces of information:
1. an address in memory (the location of the first byte for that variable)
2. the type of the variable (indicates how many bytes of memory the variable requires)
Aan array in memory is described by two pieces of information:

1. an address in memory (the location of the first byte of the first element)
2. the base type of the array (indicates how many bytes of memory the variable requires)
The array indexed variables are always placed next to one another in sequential order in memory.

To obtain the address of any other element, the compiler uses this formula:
&score[i] = &score[0] + i * n
where i is the index and n is the number of bytes needed for the base type of the array

Note: The computer does not remember how many elements are in the array.

The computer will let us get away with using an index that is out of range or illegal.

address

memory
name of variable

	
	
	

	1022
	
	

	1023
	
	 score[0]

	1024
	
	

	1025
	
	 score[1]

	1026
	
	

	1027
	
	 score[2]

	1028
	
	

	1029
	
	 score[3]

	1030
	
	

	1031
	
	 score[4]

	1032
	
	

	1033
	
	 stuff

	1034
	
	

	1035
	
	 moreStuff

	1036
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Address of score[0]
On this computer each indexed variable uses 2 bytes, so score[3] begins 2x3=6 bytes after the start of score[0]

There is no indexed variable score[5] but if there were one, it would be here

There is no indexed variable score[6] but if there were one, it would be here

Using arays as parameters in functions

There are three types of function parameters:
1. call-by-value parameter

2. call-by-reference parameter

3. array parameter
Syntax for a function declaration of a function with an array parameter
void fillUp (int arrPar[], int sizePar); // if you put a number inside[], it will be ignored
// Precondition: size is an int variable whose value is the number of elements that the function will process in the array.

// Postcondition: The first “size” elements of the array are given values by the user at the keyboard.

Syntax for a function definition of a function with an array parameter
void fillUp (int arrPar[], int sizePar)
// if you put a number inside[], it will be ignored
{
 cout << “Enter” << sizePar << “ numbers:\n”;

 for (int i = 0; i < sizePar; i++)

 cin >> arrPar[i];

 cout << “The last array index used is ” << (sizePar - 1) << endl;

}

Syntax to invoke a function with an array parameter

int testScores[100], numberOfScores = 27; // preconditions need to be met

//now we can invoke function:
fillUp(testScores, numberOfScores);
//note that in the function call, you must leave out the [] in the array argument!

What happens when a function is invoked that has an array parameter?
1. Control of the program goes to the function definition.

2. The parameters of the function are declared as variables local to the function.
So memory gets allocated for the variables.
How the memory gets allocated depends on the type of parameter:
a. For a CBV parameter, the memory that gets allocated is new memory space. Furthermore, the declared variable gets initialized to the value of the argument passed.

So the type of arguments that you can use for a CBV parameter is anything that evaluates to a value that is of the same type as the parameter.

b. For a CBR parameter, the memory that gets allocated is the same memory as the variable that was passed as the argument.

So the only type of argument that you can use for a CBR parameter is a variable of the same type as the parameter.

c. For an array parameter, the memory that gets allocated is the same memory as the memory for the first array element of the array that was passed as an argument.

So the only type of argument that you can use for an array parameter is the name of an array that is the same type as the array parameter.

3. The function body is executed
4. At the return statement, control goes back to the place where the function was invoked.
Notice that an array parameter is actually very similar to pass-by-reference parameters because any action that is performed on the elements of the array parameter is performed on the elements of the array argument. This means that the values of the elements of the array argument can be changed by the function!

The compiler only remembers the address of the first element of the array.
So array parameters are considered to be a weak form of call-by-reference parameters.

When the function needs the value of any element of an array parameter, it can find it by going to the memory location of the element. It finds the location from the formula:
&arrPar[i] = &arrPar[0] + i * n
where n is the number of bytes needed for the base type of the array
But the function won’t know the size of the arrPar.

That is why it is important to always give a function with an array parameter a second parameter indicating the size of the array. (This may result in partially filled arrays.)
The const modifier can create a constant array parameter
Recall you can declare constants with the const modifier:

const int myLuckyNumber = 13;
Sometimes you want to ensure that a function will an array parameter will not change any values of the elements of the array passed to it. For example if you just want to print out the elements.

You can use this const modifier to create an array parameter whose elements can’t be changed by the function.

Example:
void showArray (const double arrPar[], int sizePar);

//The elements of any array passed to this function will not be allowed to be changed by the function.

Pitfall
double computeAverage (int someArray[], int numberUsed);
// Precondition: someArray is a declared array with basetype int and size larger than numberUsed

// numberUsed is a declared int and has been given a value

// Postcondition: returns the average of the elements in the first numberUsed elements of the array

// someArray.

void showDiff(const int arrPar[], int numUsed)

{

 double aver;

 aver = computeAverage (arrPar, numUsed);

 cout << “The difference between each element of the array and the average of the array is \n” ;

 for (int i = 0; i < numUsed; i++)

 cout << aver - arrPar[i] << “for element ” << i << endl;
}

Most compilers will give error message for this code.

Why? Because the argument given to computeAverage is of the wrong type!

computeAverage needs an argument that is an int array.
But in the function showDiff it is passed a const int array.
It is analogous to doing this:

double computeAverage (int num1, int num2, int num3)
// Precondition: num1, num2, num3 all are declared ints and have been given values

// Postcondition: returns the average of three integers

computeAverage (1.1, 2.2, 3.3)
//We are trying to give a function arguments that are of the wrong type!

Functions that return an array
Actually a function can’t return an array, but it can return a pointer to an array. Which is kinda sorta the same thing as an array. More on this later.

Multidimensional Arrays

It is possible to declare an array with more than one index. Even more than two. But most multidimensional have just two.
Consider this array declaration for a 2D array:
char page[30][100]

This declares an “array of arrays”.
It is an array of size 30 whose elements are all char arrays of size 100.

Think of this array as storing the characters on a page in a book.
Each page has 30 lines and each line has 100 characters.
Consider this array declaration for a 3D array:

char book[400][30][100] ;

This declares an “array of arrays of arrays”.
It is an array of size 400.

Each of these 400 elements is an array of 30 elements.

Each of these 30 elements is an arrays of 100 elements.

Each of these 100 elements is of type char.

So this is a book of 400 pages.

Each page has 30 lines.

Each line has 100 characters.

You can see how complicated it gets with higher dimensional arrays!

But useful!

Multidimensional Array Parameters

Consider the following function definition with an array parameter.
void displPg (const char page[][100], int sizePar)

{

 for (int i = 0; i < sizePar; i++)

 {

 for (int j = 0; j < 100; j++)

 cout << page[i][j]
 cout << endl;

 }

}

As with one-dimensional arrays, the array parameter does not need a number in the first [].
If one is there, compiler will ignore it. Numbers are needed in any following [].

That is why you need to define the function with the second argument, in order to give the size of the first dimension, i.e. the size of the array.

Page 6 of 6

