ENGN 38

Introduction to Computing for Engineers

Chapter 6: Structures & Classes

Object Oriented Programming (OOP)
The idea of the programming methodology known as Object Oriented Programming (OOP) is:

· What is the data?

· What do I need to do with the data?

OOP It is centered on data, not algorithms.

Classes are central to OOP.
They separate the C++ language from the C language.

What is a class?

· A class is a programmer-defined data type.

· A class is a collection of values of different types treated as a single item.

· A class has member functions and member variables. (These variables hold the data values!)
· The member functions can perform actions on or with the member variables.
· Member functions have special access to the member variables.
Example:

Consider a class called Vehicle.

· It has member variables called engineSpeed and torque.

· It has a member function called calcPower.

· This member function uses the values of engineSpeed and torque to calculate the power developed by the engine.

Where can you use class types?

You can use class types wherever you use the primitive types of int, double, etc.
So you can use classes as:
· a variable in main

· a parameter for a function, either CBV or CBR

· the type returned by a function

What is an object?

An object is a variable declared to be of a class type:
Vehicle myRedHonda;
//myRedHonda is an object of the class Vehicle
This is analogous to a variable declared to be of a primitive data type:

int numStudents;
//numStudents is a variable of the datatype int
So an “object of a class” is analogous to a “variable of a type”.
· These are the objects of OOP!
· An object has a value just like any variable, except that the object value is a collection of the smaller values called member variable values or just member values.
· Objects are capable of actions, namely, invocations of member functions!

· Different classes can have the same name for member variables. They are different because they are members of different classes. (Another example of polymorphism.)

First we’ll talk about structures which are sort of like classes but without member functions.

They are easier to understand.
Structures
A structure is a collection of values of different types treated as a single item.

e.g. a CD (certificate of deposit) has an account balance, the interest rate for the account and the term (number of months until maturity).
Syntax to declare a structure:

struct CDAccount //If this is declared outside of all function definitions

{

 // (including main), then it is a global definition
 double balance;

// and hence available to all code that follows it.

 double interestRate;

 int term;

 // these are the member names for the member variables
};

// Note that there must be a ; here

//CDAccount is the structure tag. It usually starts with uppercase.
A structure variable has values just like any variable, except that the structure value is a collection of the smaller values called member values.

Different structure types can have the same name for member variables. (Another example of polymorphism.)

Syntax to declare a structure variable:

CDAccount myAccount, yourAccount; //declares 2 variables of structure type CDAccount

Syntax to assign values to members of a structure variable:
myAccount.balance = $1000000
 //this is the dot operator - member variables are

myAccount.interestRate = 0.10
 //specified by giving the name of the structure variable

myAccount.term = 12

 //followed by a dot and then the member name

 //dot operator aka structure member access operator

Syntax to declare and initialized a structure variable:
CDAccount myAccount = {1000000, 0.10, 12}
 //like arrays – too few the rest are 0

//too many gives error

Using structures in assignment statements
yourAccount = myAccount

// Now yourAccount.balance has value of $1000000

yourAccount.interestRate has value of 0.10

yourAccount.term has value of 12
Using structure types

A structure type can be used just like the primitive types of int, double, etc.
· a variable declared in main can be of a structure type
· a parameter for a function can be of a structure type, either CBV or CBR

· the type returned by a function can be of a structure type
An example of a structure that has a member which is a structure:
struct Date

{ int month, day, year;

};

struct PersonInfo

{

 double height;

 int weight;

 Date birthday;

 };

The following might appear somewhere in main….

PersonInfo Wendy;
Wendy.height = 70;

Wendy.weight = 155;
Wendy.birthday.month = 08;

Wendy.birthday.day = 13;

Wendy.birthday.year = 1957;

syntax to declare a class:
class Vehicle
{

 public:

 // we’ll talk about this later

double calcPower();

 //this is a member function prototype
// the function definition comes after main – just like any regular function definition
 private:

// we’ll talk about this later
double engineSpeed;

// these are the member variables

int torque;

};
syntax to declare an object:
In general:
class objectName;

Example:
Vehicle myRedHonda;

// declares an object of class type Vehicle
syntax to invoke a member function:
myRedHonda.calcPower ();

· To invoke a member function of a class, you need a calling object.
A calling object is a declared object of the class.
In this case the calling object is myRedHonda.

· Notice the use of the dot operator to access the member function.
The dot operator is aka the member access operator.
In this case it is the member function access operator.
· calcPower will use the values of the member variables of the object myRedHonda to calculate the power.

· In general member functions will act on the member variables of the calling object.
Member functions have special access to the member variables.
syntax for a member function prototype
class Vehicle

{

 public:

double calcPower();
// this is the member function prototype
 private:

double engineSpeed;

double torque;

};
The syntax is just like any function prototype except that it is placed in the public section of the class declaration.

syntax for a member function definition
double Vehicle::calcPower()

// Notice the use of the class name with the scope resolution operator, ::

// They are needed to identify the function as a member function of the class Vehicle.

{ return (torque*engineSpeed);

 }

Notes:

· The syntax for a member function definition is the same as any other function definition
except…
The class name and the scope resolution operator must be included in the function header so that the function is identified as a member function of a class, not just a normal function.

· This definition would appear after main, just like any regular function definition.

· The variables torque and engineSpeed are not parameters of the function.
Nor are they declared variables in the function.
It’s OK! Because member variables are always available to the member functions.

· Neither of the variables torque or engineSpeed in the function body have a calling object.
 It’s OK! Because the object will be whatever object calls the function.

· The class name that precedes the scope resolution operator is often called a type qualifier because it qualifies the function name to a particular type.

syntax to assign a value to a member variable of an object:

myRedHonda.engineSpeed = 1800;

// assigns 1800 to the value of engineSpeed in the object myRedHonda

myRedHonda.torque = 300;

 //assigns 300 to the value of torque in the object myRedHonda

Accessing a member variable is similar to accessing member functions: You need a calling object used with the dot operator. (The dot operator is aka the member access operator, in this case it is the member variable access operator.)

Actually these won’t work! (They do work for structures.)
They won’t work because the member variables of the class Vehicle were declared as private.

If they had been declared public – no problem.

Private means they are only accessible to the member functions of the class.

So….

If a member variable is private, how can we assign it a value?
Answer: with mutator functions!
If a member variable is private, how can we use it? Even just to print its value to the screen?
Answer: with accessor functions!
mutator functions

A mutator function is a member function of a class that changes the value of a member variable.
Usually (not always) it is a void function with one parameter.

The type of the parameter should be of the same type as the member variable it is changing.
Its name is usually the prefix “set” + the name of the member variable it is changing the value of.

example: syntax for a mutator function prototype

void setEngineSpeed (int rpm);
//Preconditions: and integer variable has been declared and given a value

//Postconditions: the member variable engineSpeed has been given the value of rpm.

This prototype would appear in the public section of the class definition.

example: syntax for a mutator function definition
void Vehicle::setEngineSpeed (int rpm)
/* Note the scope resolution operator is used with the class name to identify the function as a member function of the class Vehicle. */
{
 engineSpeed = rpm;

 return;

}

Questions:

· Where would this definition be placed in the program?

· Why does it need the name of the class and the scope resolution operator in the function header?

· The variable engineSpeed is not a parameter of the function. Nor is it a declared variable in the function. Why is this OK?

· The variable engineSpeed does not have a calling object. Why is this OK?

accessor functions

An accessor function is a member function of a class that returns the value of a member variable.

Generally it is a valued function with no parameters. It should return a value of the same type as the member variable.

Its name is usually the prefix “get” + the name of the member variable it returning the value of.

example: syntax for an accessor function prototype

double getEngineSpeed ();
//Preconditions: the member variable engineSpeed needs to have a value.
//Postconditions: the value of the member variable engineSpeed is returned.

This prototype would appear in the public section of the class definition.

example: syntax for an accessor function definition

double Vehicle::getEngineSpeed ()

{
 return engineSpeed;

}

Don’t confuse the scope resolution operator and the dot operator

The scope resolution operator is used in the member function header with the class name to specify which class the function is a member of.

double Vehicle::calcPower()
The dot operator is used with the object name to access member functions.
Vehicle myRedHonda;

myRedHonda.calcPower();
Public and Private members
Members that are public are available anywhere and to any function.

Members that are private cannot be referenced by name anyplace except within the definitions of the member functions of the class.

Once you make a member variable private there is no way to change its value except by using one of the member functions. In fact the only place private member variables are accessible are in member function definitions. This makes the implementation of the member data hidden from the user.
Normal good programming practice requires that all member variables be private and that most member functions be public. The only functions that should be private are those helping member functions that are only used in the definitions of other member functions.

It doesn’t matter which you list first, but most programmers like to list the public section first. This means that any other programmer using the class just needs to see the public members and so listing them first will make it easier. For classes, the default is private.

So the best way to declare a class:
class Vehicle
{

 public:

// public functions have access to the member data

most member functions

// think: “This is what I want to do.”
 private:

all member variables
// think: “This is the data I have available.
What should I do to /with it?
 a few member functions that are only used in other member functions
};

// these are called helping member functions
A note about OOP

Data rather than algorithms take center stage.
The algorithms are made to fit the data as opposed to designing the data to fit the algorithms.

For the best OOP style, there should be no global functions at all, only classes with member functions. In OOP you define objects and how the objects interact, rather than algorithms that operate on data.
A note about the difference between classes and structures

Actually, aside from some notational differences, a C++ class can do anything a structure can do.
So why have both? If you use structures that only have public member variables and classes that have private member variables and public member functions then you have a meaningful difference.

By default members of structures are public and the default for classes is private.

Encapsulation/ Data abstraction/ information hiding

The details of the implementation are hidden from the programmer. We’ve seen how to encapsulate functions. Classes should be encapsulated too. What do we mean by this?

Consider that a data type has values and operations that can be performed on the values.

e.g. int can have values of 1, 2, 3546. The operations of + - * / and % can be performed on them.

So you should think of a data type as a collection of values together with a set of basic operations defined on these values.

An abstract data type (ADT) is one that a programmer does not have access to the details of how the values and operations are implemented.

int is an abstract data type because you do not know how the operations for this type are implemented.

Classes should also be ADTs.

The operations of a class are the (public) member functions of the class.

The member function declarations, given in the class definition, and a few comments should be all the programmer needs in order to use the class. (Just like a function prototype.) They should not have to look at the member function definitions.

The implementation of the data should be as hidden as the implementation of the member functions. e.g. in DayOfYear the programmer should not care if month is an int or a string. How do we do this? Make the data members private!

The rules for how to use a class are known as the interface or API.

So someone using a class only needs to know the interface, not the implementation.

In summary:

The interface of a C++ class:

· the comments that explain what the data in the class represents

· the public member functions, with comments so that anyone can know how to use them.
The implementation of a C++ class:

· the private member variables

· the private members functions

· the member function definitions (public and private)

The advantages of separating the implementation from the interface:

1. you can write the main part of your program without knowing how to implement the class

2. you can write other classes and functions that use the class without knowing how to implement the class.

3. can divide the work among many programmers

4. divides a larger task into smaller ones that are easier to design and debug

The test of whether your class definition produces an ADT (i.e. it properly separates the interface and the implementation) is if you can change the implementation without needing to change any other code for any program that uses the class.
Page 1 of 8

