ENGN 38

Introduction to Computing for Engineers

Chapter 7: Constructors

Often you want to initialize member variables of a class when you declare an object of the class.

C++ has special provisions for doing this: constructors.

Constructors…
· … are special member functions of a class.
· … are used to initialize the member variables of an object when the object is declared.

This means that the member variables of the object are initialized,

i.e. they are given values immediately.

· … are automatically invoked when an object of the class is declared.
There will always be at least one constructor for a class.
If you don’t create one, a default constructor will be created automatically.

A default constructor is one that has no parameters.
Syntax for constructor function declaration/definition
The syntax is the same as the syntax for any other member function declaration/definition except for two points:

1. A constructor must have the same name as the class.

2. The constructor cannot return a value and so the type (even void) is omitted at the start of the function declaration and function header.

Example of a Class with 3 constructors
class DayOfYear

{
public:

DayOfYear (int monthValue, int dayValue);

 // Notice its name is the same as the class name and there is no keyword void
 // This constructor initializes the month and day to the value of the arguments.

 // Constructors, like any member function, should be public.

 DayOfYear (int monthValue);

// Constructors are usually overloaded

DayOfYear();

// This is a default constructor because it has no arguments.

void setMonth (int newMonth);
 // These are mutator member functions

void setDay (int newDay);

int getMonth();

//These are accessor member functions

int getDay();

 private:

int month;

int day;
}

Syntax for invoking constructors
Now you can declare an object and initialize it, using any of the constructors in the class definition.

Implicit constructor calls
When you declare an object of a class you implicitly invoke a constructor.

You can do it with any of the 3 constructor functions in this class:

DayOfYear myBirthday (8,13);

DayOfYear myBirthday (8);

DayOfYear myBirthday;

Note that when a default constructor is called implicitly, the () are omitted.

So if you don’t specify a constructor with arguments, then the default constructor is invoked!

Explicit constructor calls
The constructor is invoked after the object has been declared. This is an explicit constructor call.
DayOfYear myBirthday;

You can do it with any of the 3 constructor functions in this class:

myBirthday = DayOfYear (8,13);
myBirthday = DayOfYear(8);

myBirthday = DayOfYear ();

Notice when a default constructor is called explicitly, the () are used.

Syntax for constructor function definitions
DayOfYear::DayOfYear (int monthValue, int dayValue)

/* Notice the name is the same as the class and the fact that there is no word at the start indicating void or a return type*/
{ month = monthValue;

 day = dayValue;

}

Alternate Syntax:
DayOfYear:: DayOfYear (int monthValue, int dayValue) : month(monthValue), day(dayValue);
{ // Can be empty function body or contain checks}

 (this is the

 initialization section
Beware – You can’t use constructors like other member functions.

You cannot invoke them with calling objects.

For example this is illegal:

myBirthday.DayOfYear(8,13);

Default Constructors

A default constructor has no arguments.
When an object is declared using the default constructor the () are omitted:

DayOfYear myBirthday;

So this means that if you don’t use one of the constructors that has parameters when an object is declared, the default constructor is automatically invoked!

Why can’t we do this?

DayOfYear myBirthday();

Because it has a different meaning than what is intended!
This is a function prototype for a function named myBirthday that has no parameters and that returns a value of the class type DayOfYear.
If you define a class without constructors, a default constructor will automatically be created for it.
This is OK.

If you define a class and create your own constructors but none of them are the default constructor (i.e. have zero parameters) then there will be no default constructor.
This is NOT OK!

It is not OK because then this will be illegal:

DayOfYear myBirthday;
You wouldn’t want that! So make sure that if you create any constructors, at least one of them is a default constructor!
Class Type Member Variables
A class may have a member variable whose type is that of another class.
Example:
You might have a class called Holiday
with a member variable called date whose type is of the class DayOfYear.

The only tricky part is some special notation to invoke the member variable’s constructor within the constructor of the other class.
Holiday::Holiday(int monthValue, int dayValue, bool theEnforcement)

: date(monthValue, dayValue), parkingEnforcement(theEnforcement)

{//Intentionally left empty}

Note that in the initialization section, the initialization of month and day is done using the constructor for the class DayOfYear (date – the member variable of Holiday is an object of the class DayOfYear).
Notice that the parameters of the outer class constructor Holiday can be used in the invocation of the constructor for the member variable.
Page 3 of 3

